Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Hazard Mater ; 468: 133791, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367438

RESUMEN

The prevalence of antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (MWTPs) has emerged as a significant environmental concern. Despite advanced treatment processes, high levels of ARGs persist in the secondary effluent from MWTPs, posing ongoing environmental risks. This study explores the potential of gamma-ray irradiation as a novel approach for sterilizing antibiotic-resistant bacteria (ARB) and reducing ARGs in MWTP secondary effluent. Our findings reveal that gamma-ray irradiation at an absorbed dose of 1.6 kGy effectively deactivates all culturable bacteria, with no subsequent revival observed after exposure to 6.4 kGy and a 96-h incubation in darkness at room temperature. The removal efficiencies for a range of ARGs, including tetO, tetA, blaTEM-1, sulI, sulII, and tetW, were up to 90.5% with a 25.6 kGy absorbed dose. No resurgence of ARGs was detected after irradiation. Additionally, this study demonstrates a considerable reduction in the abundances of extracellular ARGs, with the transformation efficiencies of extracellular tetracycline and sulfadiazine resistance genes decreasing by 56.3-81.8% after 25.6 kGy irradiation. These results highlight the effectiveness of gamma-ray irradiation as an advanced and promising method for ARB sterilization and ARG reduction in the secondary effluent of MWTPs, offering a potential pathway to mitigate environmental risks associated with antibiotic resistance.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética
2.
Mater Horiz ; 11(6): 1567-1578, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38265092

RESUMEN

Solid materials with ultra-low thermal conductivity (κ) are of great interest in thermoelectrics for energy conversion or as thermal barrier coatings for thermal insulation. Many low-κ materials exhibit unique properties, such as weak or even insignificant dependence on temperature (T) for κ, i.e., an anomalous glass-like behavior. However, a comprehensive theoretical model elucidating the microscopic phonon mechanism responsible for the glass-like κ-T relationship is still absent. Herein, we take rare-earth tantalates (RE3TaO7) as examples to reexamine phonon thermal transport in defective crystals. By combining experimental studies and atomistic simulations up to 1800 K, we revealed that diffusion-like phonons related to inhomogeneous interatomic bonding contribute more than 70% to the total κ, overturning the conventional understanding that low-frequency phonons dominate heat transport. Furthermore, due to the bridging effects of interatomic bonding, the κ of high-entropy tantalates is not necessarily lower than that of medium-entropy materials, suggesting that attempts to reduce κ through high-entropy engineering are limited, at least in defective fluorite tantalates. The new physical mechanism of multimodal phonon thermal transport in defective structures demonstrated in this work provides a reference for the analysis of phonon transport and offers a new strategy to develop and design low-κ materials by regulating the inhomogeneity of interatomic bonding.

3.
Adv Sci (Weinh) ; 11(2): e2305313, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037848

RESUMEN

Recent developed interfacial solar brine crystallizers, which employ solar-driven water evaporation for salts crystallization from the near-saturation brine to achieve zero liquid discharge (ZLD) brine treatment, are promising due to their excellent energy efficiency and sustainability. However, most existing interfacial solar crystallizers are only tested using NaCl solution and failed to maintain high evaporation capability when treating real seawater due to the scaling problem caused by the crystallization of high-valent cations. Herein, an artificial tree solar crystallizer (ATSC) with a multi-branched and interconnected open-cell cellular structure that significantly increased evaporation surface is rationally designed, achieving an ultra-high evaporation rate (2.30 kg m-2  h-1 during 2 h exposure) and high energy efficiency (128%) in concentrated real seawater. The unit cell design of ATSC promoted salt crystallization on the outer frame rather than the inner voids, ensuring that salt crystallization does not affect the continuous transport of brine through the pores inside the unit cell, thus ATSC can maintain a stable evaporation rate of 1.94 kg m-2  h-1 on average in concentrated seawater for 80 h continuous exposure. The design concept of ATSC represents a major step forward toward ZLD treatment of high-salinity brine in many industrial processes is believed.

4.
Acta Biochim Pol ; 70(3): 703-711, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37722013

RESUMEN

Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including renal cell carcinoma (RCC). This study probed the molecular mechanism of circPGPEP1 regulating RCC proliferation, Warburg effect, and distant metastasis by targeting the miR-378a-3p/JPT1 axis. Here identified higher circPGPEP1 expression in RCC tissues and cells by RT-qPCR, and high levels of circPGPEP1 were positively correlated with high histological grade and distant metastasis in RCC patients. Furthermore, patients with high levels of circPGPEP1 had a worse survival prognosis. Functional assays presented that knockdown of circPGPEP1 inhibited RCC proliferation, invasion, migration, EMT, and Warburg effect. Dual-luciferase reporter assay, RNA immunoprecipitation, nucleoplasmic RNA isolation, and functional rescue experiments confirmed that circPGPEP1 induced JPT1 expression by sponging miR-378a-3p, thereby promoting RCC malignant phenotype. Xenograft assays and metastasis models further demonstrated that down-regulation of circPGPEP1 effectively inhibited tumor growth and distant metastasis of RCC. Taken together, circPGPEP1, a prognostic circRNA in RCC, acts through the miR-378a-3p/JPT1 axis to regulate RCC progression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Regulación hacia Abajo , Neoplasias Renales/genética , MicroARNs/genética , ARN Circular/genética , Piroglutamil-Peptidasa I/metabolismo
5.
Plant Physiol Biochem ; 201: 107883, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37442049

RESUMEN

Chenopodium ambrosioides is a manganese (Mn) hyperaccumulator that can be used for Mn-polluted soil phytoremediation. However, the mechanism of Mn tolerance of C. ambrosioides remains largely unknown. In this study, the key factors for Mn tolerance of C. ambrosioides was investigated from the aspects of DNA methylation pattern, gene expression regulation and physiological function. We found that the two genotypes of C. ambrosioides populations have differentiated tolerance to Mn stress (Mn-tolerant: CS and XC, Mn-sensitive: WH). Although there was no difference in Mn accumulation between two types under excess Mn, the biomass and photosynthetic systems were more severely inhibited in Mn-sensitive type, as well as suffering more serious oxidative damage. More differentially expressed genes (DEGs) were downregulated in the Mn-tolerant type, indicating that the Mn-tolerant type tends to inhibit gene expression to cope with Mn stress. DEGs related to metal transport, antioxidant system, phytohormone and transcription factors contribute to the tolerance of C. ambrosioides to Mn, and account for difference in Mn stress sensitivities between the Mn-sensitive and tolerant types. We also found that DNA methylation variation may help to cope with Mn stress. The global DNA methylation level in C. ambrosioides increased under Mn stress, especially in the Mn-sensitive type. Dozens of methylated loci were significantly associated with the Mn accumulation trait of C. ambrosioides, and some critical DEGs were regulated by DNA methylation. Our study comprehensively demonstrated the Mn tolerance mechanism of C. ambrosioides for the first time, and highlighted the roles of epigenetic modification in C. ambrosioides response to Mn stress. Our findings may contribute to elucidating the adaptation mechanism of hyperaccumulator to the heavy metal toxicity.


Asunto(s)
Chenopodium ambrosioides , Manganeso , Manganeso/toxicidad , Manganeso/metabolismo , Transcriptoma/genética , Epigenómica , Antioxidantes/metabolismo
6.
Hereditas ; 160(1): 32, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37496082

RESUMEN

BACKGROUND: RNA methylation modifications, such as N1-methyladenosine/N6-methyladenosine /N5-methylcytosine (m1A/m6A/m5C), are the most common RNA modifications and are crucial for a number of biological processes. Nonetheless, the role of RNA methylation modifications of m1A/m6A/m5C in the pathogenesis of renal interstitial fibrosis (RIF) remains incompletely understood. METHODS: Firstly, we downloaded 2 expression datasets from the GEO database, namely GSE22459 and GSE76882. In a differential analysis of these datasets between patients with and without RIF, we selected 33 methylation-related genes (MRGs). We then applied a PPI network, LASSO analysis, SVM-RFE algorithm, and RF algorithm to identify key MRGs. RESULTS: We eventually obtained five candidate MRGs (WTAP, ALKBH5, YTHDF2, RBMX, and ELAVL1) to forecast the risk of RIF. We created a nomogram model derived from five key MRGs, which revealed that the nomogram model may be advantageous to patients. Based on the selected five significant MRGs, patients with RIF were classified into two MRG patterns using consensus clustering, and the correlation between the five MRGs, the two MRG patterns, and the genetic pattern with immune cell infiltration was shown. Moreover, we conducted GO and KEGG analyses on 768 DEGs between MRG clusters A and B to look into their different involvement in RIF. To measure the MRG patterns, a PCA algorithm was developed to determine MRG scores for each sample. The MRG scores of the patients in cluster B were higher than those in cluster A. CONCLUSIONS: Ultimately, we concluded that cluster A in the two MRG patterns identified on these five key m1A/m6A/m5C regulators may be associated with RIF.


Asunto(s)
Algoritmos , Factores de Transcripción , Humanos , Metilación , Fibrosis , ARN
7.
Adv Sci (Weinh) ; 10(3): e2205681, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446629

RESUMEN

Learning and studying the structure-activity relationship in the bio-enzymes is conducive to the design of nanozymes for energy and environmental application. Herein, Fe single-atom nanozymes (Fe-SANs) with Fe-N5 site, inspired by the structure of cytochromes P450 (CYPs), are developed and characterized. Similar to the CYPs, the hyperoxide can activate the Fe(III) center of Fe-SANs to generate Fe(IV)O intermediately, which can transfer oxygen to the substrate with ultrafast speed. Particularly, using the peroxymonosulfate (PMS)-activated Fe-SANs to oxidize sulfamethoxazole, a typical antibiotic contaminant, as the model hyperoxides activation reaction, the excellent activity within 284 min-1 g-1 (catalyst) mmol-1 (PMS) oxidation rate and 91.6% selectivity to the Fe(IV)O intermediate oxidation are demonstrated. More importantly, instead of promoting PMS adsorption, the axial N ligand modulates the electron structure of FeN5 SANs for the lower reaction energy barrier and promotes electron transfer to PMS to produce Fe(IV)O intermediate with high selectivity. The highlight of the axial N coordination in the nanozymes in this work provides deep insight to guide the design and development of nanozymes nearly to the bio-enzyme with excellent activity and selectivity.


Asunto(s)
Compuestos Férricos , Peróxidos , Ligandos , Oxidación-Reducción
8.
Nutrition ; 107: 111934, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563433

RESUMEN

OBJECTIVES: Individuals with prior cancer diagnosis are more likely to have low muscle mass (LMM) than their cancer-free counterparts. Understanding the effects of LMM on the prognosis of cancer survivors can be clinically important. The aim of this study was to investigate whether risks for all-cause and cardiovascular disease (CVD)-specific mortality differ by status of LMM in cancer survivors and a matched cohort without cancer history. METHODS: We used cohort data from the 1999-2006 and 2011-2014 National Health and Nutrition Examination Survey. Participants included 946 adults surviving for ≥1 since cancer diagnosis and a matched cohort (by age, sex, and race) without cancer history (N = 1857). LMM was defined by appendicular lean mass and body height (men <7.26 kg/m2, women <5.45 kg/m2). Death was ascertained via the National Death Index and cause of death was assessed via International Classification of Diseases, Tenth Revision. Multivariable Cox proportional hazards models were used to estimate adjusted hazard ratio (aHR) and 95% confidence interval (CI) of LMM. RESULTS: The mean age of cancer survivors and matched cohort was 60.6 y (SD 15) and 60.2 y (SD 14.9), respectively. The median follow-up was 10.5 y for survivors and 10.9 y for matched cohort. Overall, 22.2% of cancer survivors and 19.7% of the matched cohort had LMM, respectively. In all, 321 survivors (33.9%) and 495 participants (26.7%) in the matched cohort died during follow-up. CVD-specific deaths were identified in 58 survivors (6.1%) and 122 participants in the matched cohort (6.6%). The multivariable Cox model suggested that LMM was positively associated with all-cause (aHR, 1.73; 95% CI, 1.31-2.29) and CVD-specific (aHR, 2.13; 95% CI, 1.14-4.00) mortality in cancer survivors. The associations between LMM and risk for all-cause (aHR, 1.24; 95% CI, 0.98-1.56) and CVD-specific (aHR, 1.21; 95% CI, 0.75-1.93) mortality were not statistically significant in the matched cohort. CONCLUSION: Cancer survivors with LMM have an increased risk for all-cause and CVD-specific mortality. This increase appears to be larger than that in counterparts without cancer history.


Asunto(s)
Supervivientes de Cáncer , Enfermedades Cardiovasculares , Neoplasias , Masculino , Adulto , Humanos , Femenino , Enfermedades Cardiovasculares/diagnóstico , Encuestas Nutricionales , Pronóstico , Neoplasias/complicaciones , Músculos , Factores de Riesgo
9.
Environ Sci Pollut Res Int ; 30(2): 4023-4043, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35962167

RESUMEN

Water resources in the Mekong subregion in Cambodia (MSC) have experienced dramatic changes in past decades, threatening regional ecosystem quality and sustainable development. Thus, it is important to explore the spatiotemporal impacts of climate change and human activities on water resources and ecological sensitivity. This study proposed an effective framework including spatiotemporal analysis of land use/cover change (LUCC) and ecological sensitivity assessment by combining remote sensing (RS) and geographic information system/science (GIS). An optimized feature space and a machine learning classification algorithm were constructed to extract four typical land cover types in the MSC from 1990 to 2020. An ecological sensitivity evaluation system, including four sub-sensitivities calculated by twelve indicators, was then constructed. The results suggest that severe shrinkage of water resources occurred before 2006, decreasing by 21.68%. The correlation between water resources and climate conditions displays a high to low level as human activity becomes involved. A significant spatiotemporal evolutionary pattern of ecological sensitivity was observed under the impact of external interference. Generally, the largest proportion of MSC belongs to the lightly sensitive level, which is mainly concentrated in the lower reaches, with an average of 33.93%. The highly sensitive area with a significant value in ecological protection has a slightly downward trend from 23.72 in 1990 to 22.55% in 2020.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Recursos Hídricos , Humanos , Cambodia , China , Conservación de los Recursos Naturales/métodos , Análisis Espacio-Temporal
10.
Ann Bot ; 130(7): 1041-1056, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36413156

RESUMEN

BACKGROUND AND AIMS: Invasive plants often colonize wide-ranging geographical areas with various local microenvironments. The specific roles of epigenetic and genetic variation during such expansion are still unclear. Chenopodium ambrosioides is a well-known invasive alien species in China that can thrive in metalliferous habitats. This study aims to comprehensively understand the effects of genetic and epigenetic variation on the successful invasion of C. ambrosioides. METHODS: We sampled 367 individuals from 21 heavy metal-contaminated and uncontaminated sites with a wide geographical distribution in regions of China. We obtained environmental factors of these sampling sites, including 13 meteorological factors and the contents of four heavy metals in soils. Microsatellite markers were used to investigate the demographic history of C. ambrosioides populations in China. We also analysed the effect of epigenetic variation on metalliferous microhabitat adaptation using methylation-sensitive amplified polymorphism (MSAP) markers. A common garden experiment was conducted to compare heritable phenotypic variations among populations. KEY RESULTS: Two distinct genetic clusters that diverged thousands of years ago were identified, suggesting that the eastern and south-western C. ambrosioides populations in China may have originated from independent introduction events without recombination. Genetic variation was shown to be a dominant determinant of phenotypic differentiation relative to epigenetic variation, and further affected the geographical distribution pattern of invasive C. ambrosioides. The global DNA unmethylation level was reduced in metalliferous habitats. Dozens of methylated loci were significantly associated with the heavy metal accumulation trait of C. ambrosioides and may contribute to coping with metalliferous microenvironments. CONCLUSIONS: Our study of C. ambrosioides highlighted the dominant roles of genetic variation in large geographical range expansion and epigenetic variation in local metalliferous habitat adaptation.


Asunto(s)
Chenopodium ambrosioides , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Ecosistema , Especies Introducidas , Epigénesis Genética , Variación Genética
11.
Front Oncol ; 12: 986006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276104

RESUMEN

Background: Bladder carcinoma is a common malignancy of the urinary system. The previous study showed that EPDR1 expression was significantly related to the carcinogenesis and progression of bladder carcinoma. Methods: We retrospectively reviewed the records of 621 patients who were newly diagnosed with bladder carcinoma between January 2018 and August 2020 at The Affiliated Hospital of Zunyi Medical University. We conducted immunohistochemistry of EPDR1 in tumor tissues. Meanwhile, tumor budding evaluation was also carried out by 2 independent experienced pathologists. Results: 80 patients were included in this study with a median age of 66 years (range; 42-88 years). 45% of the patients (36/80) were non-muscle-invasive bladder carcinoma patients, while 55% of muscle-invasive bladder carcinoma(44/80). The follow-up time was from 6 months to 36 months. We found that there were significant differences in expression of EPDR1 in the tumor pT stages(p<0.05), pM stages(p<0.05), and pN stages(p<0.05). Meanwhile, a higher expression of EPDR1 indicated a worse outcome for the patient(p<0.05). A tendency toward a worse status of the patient was accompanied by a high positive rate (p<0.001). Moreover, the IOD of EPDR1 had a positive relationship with TB (p<0.05). Furthermore, we found that EPDR1 and tumor budding could be crucial factors for affecting the prognosis of bladder carcinoma, even better than pTMN(Riskscore=(0.724)* pT_stage +(4.960) *EPDR1+(4.312)*TB). Conclusion: In conclusion, bladder cancer patients with higher expression levels of EPDR1 had worse survival outcomes. The combination of TB and EPDR1 levels could predict the prognosis for muscle-invasive bladder cancer patients.

12.
Front Pharmacol ; 13: 1030766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313300

RESUMEN

Methylation has a close relationship with immune reactions, metastasis, and cancer cell growth. Additionally, RNA methylation-related proteins have emerged as potential cancer therapeutic targets. The connection between the tumor microenvironment (TME) and methylation-related genes (MRGs) remains unclear. We explored the expression patterns of the MRGs in the genome and transcriptional fields of 796 prostate cancer (PCa) samples using two separate data sets. We identified a relationship between patient clinicopathological characteristics, prognosis, TME cell infiltrating qualities, and different MRG changes, as well as the identification of two distinct molecular groupings. Then, we formed an MRGs model to predict overall survival (OS), and we tested the accuracy of the model in patients with PCa. In addition, we developed a very accurate nomogram to improve the MRG model's clinical applicability. The low-risk group had fewer tumor mutational burden (TMB), greater tumor immune dysfunction and exclusion (TIDE) ratings, fewer mutant genes, and better OS prospects. We discuss how MGRs may affect the prognosis, clinically important traits, TME, and immunotherapy responsiveness in PCa. In order to get a better understanding of MRGs in PCa, we could further explore the prognosis and create more effective immunotherapy regimens to open new avenues.

13.
Acta Cir Bras ; 37(5): e370505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976342

RESUMEN

PURPOSE: To investigate the effects of Periplaneta americana L. on ulcerative colitis (UC) induced by a combination of chronic stress (CS) and 2,4,6-trinitrobenzene sulfonic acid enema (TNBS) in rats. METHODS: The experiment UC model with CS was established in rats by a combination of chronic restraint stress, excess failure, improper, and TNBS. The body weight, disease activity index (DAI), colonic mucosal injury index (CMDI), histopathological score (HS) and pro-inflammatory mediators were measured. The content of corticotropin-releasing hormone (CRH) in hypothalamus or adrenocorticotropic hormone (ACTH) and corticosteroids (CORT) in plasma were evaluated by enzyme-linked immunosorbent assay. The proportion of T lymphocyte subsets was detected by flow cytometry, and gut microbiota was detected by 16S rDNA amplicon sequencing. RESULTS: Weight loss, DAI, CMDI, HS and proinflammatory mediators were reversed in rats by P. americana L. treatment after UC with CS. Increased epidermal growth factor (EGF) was observed in P. americana L. groups. In addition, P. americana L. could reduce the content of CRH and ACTH and regulate the ratio of CD3+, CD3+CD8+ and CD3+CD4+CD25+/CD4+ in spleen. Comparably, P. americana L. changes composition of gut microbiota. CONCLUSIONS: The ethanol extract of Periplaneta Americana L. improves UC induced by a combination of CS and TNBS in rats.


Asunto(s)
Colitis Ulcerosa , Colitis , Periplaneta , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/uso terapéutico , Animales , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon/patología , Modelos Animales de Enfermedad , Enema , Etanol/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ácido Trinitrobencenosulfónico/metabolismo
14.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35887447

RESUMEN

Aspergillus includes both plant pathogenic and beneficial fungi. Although endophytes beneficial to plants have high potential for plant growth promotion and improving stress tolerance, studies on endophytic lifestyles and endophyte-plant interactions are still limited. Here, three endophytes belonging to Aspergillus, AS31, AS33, and AS42, were isolated. They could successfully colonize rice roots and significantly improved rice growth. The genomes of strains AS31, AS33, and AS42 were sequenced and compared with other Aspergillus species covering both pathogens and endophytes. The genomes of AS31, AS33, and AS42 were 36.8, 34.8, and 35.3 Mb, respectively. The endophytic genomes had more genes encoding carbohydrate-active enzymes (CAZymes) and small secreted proteins (SSPs) and secondary metabolism gene clusters involved in indole metabolism than the pathogens. In addition, these endophytes were able to improve Pi (phosphorus) accumulation and transport in rice by inducing the expression of Pi transport genes in rice. Specifically, inoculation with endophytes significantly increased Pi contents in roots at the early stage, while the Pi contents in inoculated shoots were significantly increased at the late stage. Our results not only provide important insights into endophyte-plant interactions but also provide strain and genome resources, paving the way for the agricultural application of Aspergillus endophytes.

15.
Actas Urol Esp (Engl Ed) ; 46(8): 494-503, 2022 10.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35780051

RESUMEN

BACKGROUND: Bladder cancer (BLCA) is a malignant urothelial carcinoma with a high mortality rate. Ferroptosis is a new type of programmed cell death and functions in suppressing tumor growth and progression. However, few studies focus on ferroptosis and BLCA. MATERIALS AND METHODS: We explored the potential oncogenic roles of ferroptosis-related genes in BLCA based on multiple public datasets. We then used univariate and multivariate cox regression to build a new survival model based on ferroptosis-related genes to predict the survival of BLCA. RESULTS: We found that 23 ferroptosis-related genes had a strong correlation with each other in BLCA. Eight ferroptosis-related genes, CDKN1A, HSPA5, NFE2L2, MT1G, FANCD2, CISD1, TFRC, NCOA4, had a significantly different expression and heat-map. HSPA5 and CISD1 have a statistically significant difference in OS and DFS. Besides, CISD1 had an ideal nomogram to predict the 1-3-5-year OS (C-index: 0.701, P < .001). Furthermore, HSPA5 and CISD1 had a lower DNA methylation rate than normal tissue and HSPA5 had a positive connection with TMB (P = .02). In addition, HSPA5 participated in the DNA replication and P53 signaling pathway, and CISD1 mediated the oxidative phosphorylation and positive regulation of the intrinsic apoptotic signaling pathway. CONCLUSION: Ferroptosis-related genes had a strong correlation with BLCA, notably, HSPA5 and CISD1 may play a role in inducing ferroptosis to suppress bladder tumorigenesis and CISD1 can be a novel prognostic biomarker as well as an effective target for diagnosis and treatment in BLCA.


Asunto(s)
Carcinoma de Células Transicionales , Ferroptosis , Neoplasias de la Vejiga Urinaria , Biomarcadores , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
16.
Front Plant Sci ; 13: 912350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720534

RESUMEN

Heavy metals (HMs) have become a major environmental pollutant threatening ecosystems and human health. Although hyperaccumulators provide a viable alternative for the bioremediation of HMs, the potential of phytoremediation is often limited by the small biomass and slow growth rate of hyperaccumulators and HM toxicity to plants. Here, plant growth-promoting bacteria (PGPB)-assisted phytoremediation was used to enhance the phytoremediation of HM-contaminated soils. A PGPB with HM-tolerant (HMT-PGPB), Bacillus sp. PGP15 was isolated from the rhizosphere of a cadmium (Cd) hyperaccumulator, Solanum nigrum. Pot experiments demonstrated that inoculation with strain PGP15 could significantly increase the growth of S. nigrum. More importantly, strain PGP15 markedly improved Cd accumulation in S. nigrum while alleviating Cd-induced stress in S. nigrum. Specifically, PGP15 inoculation significantly decreased the contents of H2O2, MDA, and O 2 · - in S. nigrum, while the activities (per gram plant fresh weight) of SOD, APX, and CAT were significantly increased in the PGP15-inoculated plants compared with the control sample. These results suggested that the interactions between strain PGP15 and S. nigrum could overcome the limits of phytoremediation alone and highlighted the promising application potential of the PGPB-hyperaccumulator collaborative pattern in the bioremediation of HM-contaminated soils. Furthermore, the PGP15 genome was sequenced and compared with other strains to explore the mechanisms underlying plant growth promotion by HMT-PGPB. The results showed that core genes that define the fundamental metabolic capabilities of strain PGP15 might not be necessary for plant growth promotion. Meanwhile, PGP15-specific genes, including many transposable elements, played a crucial role in the adaptive evolution of HM resistance. Overall, our results improve the understanding of interactions between HMT-PGPB and plants and facilitate the application of HMT-PGPB in the phytoremediation of HM-contaminated soils.

17.
Kaohsiung J Med Sci ; 38(8): 790-795, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35607979

RESUMEN

We assessed the use of common urodynamics (CUD) combined with contrast-enhanced ultrasound (CEUS) to investigate the efficacy and durability of sigmoid cystoplasty alone in patients with low bladder compliance associated with vesicoureteric reflux (VUR). In this study, we recruited 25 patients with low bladder compliance and VUR who underwent bladder augmentation without antireflux surgery at our institutions between June 2017 and June 2021. The bladder condition and VUR grade were assessed preoperatively and postoperatively via CUD combined with CEUS. The mean follow-up period was 2.6 years. CUD showed significant improvement in bladder capacity and compliance and a decrease in intravesical pressure after sigmoid cystoplasty. CEUS demonstrated resolution of VUR compared with preoperative assessment. Of the 25 patients who had various degrees of reflux, VUR was eliminated in 18 patients and reduced to a lower grade in the remaining seven patients. CUD combined with CEUS is accurate and safe. They are invaluable and reliable tools for morphological and functional evaluations of the entire urinary tract in patients with low bladder compliance and VUR.


Asunto(s)
Vejiga Urinaria Neurogénica , Vejiga Urinaria Hiperactiva , Reflujo Vesicoureteral , Humanos , Estudios Retrospectivos , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/cirugía , Urodinámica , Procedimientos Quirúrgicos Urológicos , Reflujo Vesicoureteral/diagnóstico por imagen , Reflujo Vesicoureteral/cirugía
18.
Front Plant Sci ; 13: 845108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463456

RESUMEN

DNA methylation is a rapid response strategy promoting plant survival under heavy metal (HM) stress. However, the roles of DNA methylation underlying plant adaptation to HM stress remain largely unknown. Here, we used pokeweed, a hyperaccumulator of manganese (Mn) and cadmium (Cd), to explore responses of plant to HM stress at phenotypic, transcriptional and DNA methylation levels. Mn- and Cd-specific response patterns were detected in pokeweed. The growth of pokeweed was both inhibited with exposure to excess Mn/Cd, but pokeweed distinguished Mn and Cd with different subcellular distributions, ROS scavenging systems, transcriptional patterns including genes involved in DNA methylation, and differentially methylated loci (DML). The number of DML between Mn/Cd treated and untreated samples increased with increased Mn/Cd concentrations. Meanwhile, pretreatment with NADPH oxidase inhibitors prior to HM exposure markedly reduced HM-induced reactive oxygen species (ROS), which caused reductions in expressions of DNA methylase and demethylase in pretreated samples. The increased levels of HM-induced demethylation were suppressed with alleviated ROS stress, and a series of HM-related methylated loci were also ROS-related. Taken together, our study demonstrates that different HMs affect different DNA methylation sites in a dose-dependent manner and changes in DNA methylation under Mn/Cd stress are partly mediated by HM-induced ROS.

19.
J Investig Med ; 70(5): 1293-1300, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35428675

RESUMEN

The aim of the study was to explore the role and molecular mechanism of dual-specificity phosphatase 8 (DUSP8) in the drug resistance of trastuzumab in breast cancer. Real-time PCR and western blot detected the difference in expression of DUSP8 between breast cancer tissue/cells and trastuzumab-resistant tissues/cells. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of DUSP8 in breast cancer. si-DUSP8 or dusp8 overexpression vector was transiently transfected, and the effects of si-DUSP8 on apoptosis, cell viability and cell migration of drug-resistant cell lines were investigated by flow cytometry, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) and Transwell assays, and its regulation mechanism finally explored. The results showed that the expression of DUSP8 in breast cancer tissues and cells was significantly higher than in matched non-tumor tissues and cells. DUSP8 was significantly upregulated in non-responsive patients compared with patients who responded to trastuzumab. ROC analysis showed that the area under the curve was 0.732, and the diagnostic sensitivity and specificity were 64.86% and 75.76%. DUSP8 knockdown promotes apoptosis and reduces trastuzumab resistance in BT474/TR and SKBR3/TR cells by inhibiting cell migration and cell viability. Knockdown of DUSP8 increased the expression of p-p38 and p-ERK, and the regulation of DUSP8 in chemotherapy resistance of breast cancer cells may be realized by mediating mitogen-activated protein kinase (MAPK)-related signaling pathways. In conclusion, knockdown of DUSP8 expression in trastuzumab-resistant cells can inhibit cell migration and proliferation, and leads to decreased drug resistance by activating MAPK signaling pathway in trastuzumab-resistant cells.


Asunto(s)
Neoplasias de la Mama , Fosfatasas de Especificidad Dual/metabolismo , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Resistencia a Medicamentos , Resistencia a Antineoplásicos , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/farmacología , Femenino , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
20.
ACS Appl Mater Interfaces ; 14(14): 16546-16557, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362947

RESUMEN

Solar steam generation provides a promising and low-cost solution for freshwater production in energy scarcity areas. However, in real-world applications, evaporators are easily affected by microorganism contamination in source water, causing surface corrosion, structural damage, or even invalidation. Developing anti-biofouling and antibacterial evaporators is significant for long-term stable freshwater production. Herein, a composite polyelectrolyte photothermal hydrogel consisting of sulfobetaine methacrylate (SBMA), [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), and polypyrrole (PPy) with anti-biofouling and antibacterial properties is developed. Crediting sufficient ammonium groups and zwitterionic segments, the optimized polyelectrolyte hydrogel exhibits an ∼90% antibacterial ratio against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and effectively controls biological contamination. Under 1.0 kW m-2 solar irradiation, a rapid water evaporation rate of ∼1.690 kg m-2 h-1 and a high solar-to-evaporation efficiency of ∼95.94% are achieved with the photothermal hydrogel. We show that a lab-made setup integrated with the hydrogel can realize ∼0.455 kg m-2 h-1 freshwater production from seawater under natural sunlight. Moreover, the hydrogel exhibits excellent durability with a stable evaporation rate of ∼1.617 kg m-2 h-1 in real seawater for over 6 weeks, making it fullhearted in the real-world application of solar steam generation.


Asunto(s)
Luz Solar , Purificación del Agua , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Hidrogeles/farmacología , Polielectrolitos , Polímeros/química , Polímeros/farmacología , Pirroles , Staphylococcus aureus , Vapor , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA