Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
FEBS J ; 291(8): 1780-1794, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38317509

RESUMEN

Colorectal cancer (CRC) has emerged as the third most prevalent and second deadliest cancer worldwide. Metabolic reprogramming is a key hallmark of cancer cells. Phosphoglycerate dehydrogenase (PHGDH) is over-expressed in multiple cancers, including CRC. Although the role of PHGDH in metabolism has been extensively investigated, its effects on CRC development remains to be elucidated. In the present study, it was demonstrated that PHGDH expression was significantly up-regulated in colorectal cancer. PHGDH expression was positively correlated with that of the aryl hydrocarbon receptor (AhR) and its target genes, CYP1A1 and CYP1B1, in CRC cells. Knockdown of PHGDH reduced AhR levels and activity, as well as the ratio of reduced to oxidized glutathione. The selective AhR antagonist stemregenin 1 induced cell death through reactive oxygen species-dependent autophagy in CRC cells. PHGDH knockdown induced CRC cell sensitivity to stemregenin 1 via the autophagy pathway. Our findings suggest that PHGDH modulates AhR signaling and the redox-dependent autophagy pathway in CRC, and that the combination of inhibition of both PHGDH and AhR may be a novel therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales , Receptores de Hidrocarburo de Aril , Humanos , Autofagia/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Fosfoglicerato-Deshidrogenasa/deficiencia , Fosfoglicerato-Deshidrogenasa/genética , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
2.
Int J Biol Macromol ; 260(Pt 2): 129646, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272411

RESUMEN

The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Neoplasias , Humanos , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Membrana Celular/metabolismo
3.
Mol Cell Biochem ; 479(4): 915-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37249813

RESUMEN

Despite recent advances have been made in clinical treatments of breast cancer, the general prognosis of patients remains poor. Therefore, it is imperative to develop a more effective therapeutic strategy. Lysine demethylase 4B (KDM4B) has been reported to participate in breast cancer development recently, but its exact biological role in breast cancer remains unclear. Here, we observed that KDM4B was down-regulated in human primary BRCA tissues and the low levels of KDM4B expression were correlated with poor survival. Gain- and loss-of-function experiments showed that KDM4B inhibited the proliferation and metastasis of breast cancer cells. Besides, knockdown of KDM4B promoted the epithelial-mesenchymal transition (EMT) and cell stemness in breast cancer cells. Mechanistically, KDM4B down-regulates PHGDH by decreasing the enrichment of H3K36me3 on the promoter region of PHGDH. Knockdown of PHGDH could significantly reversed proliferation, migration, EMT, and cell stemness induced by KDM4B silencing in breast cancer cells. Collectively, we propose a model for a KDM4B/PHGDH axis that provides novel insight into breast cancer development, which may serve as a potential factor for predicting prognosis and a therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Regulación hacia Arriba , Regulación hacia Abajo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
4.
FEBS J ; 291(3): 412-429, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129434

RESUMEN

Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Oxidación-Reducción , Neoplasias/genética , Neoplasias/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Estrés Oxidativo
5.
Biochem Pharmacol ; 219: 115933, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995980

RESUMEN

Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death and has been implicated in the occurrence and development of various diseases, including heart disease, nervous system diseases and cancer. Ferroptosis induction recently emerged as an attractive strategy for cancer therapy. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. This review summarizes recent progress on the mechanisms of ferroptosis resistance in cancer, highlights redox status and metabolism's role in it. Combination therapy for ferroptosis has great potential in cancer treatment, especially malignant tumors that are resistant to conventional therapies. This review will lead us to have a comprehensive understanding of the future exploration of ferroptosis and cancer therapy. A deeper understanding of the relationship between ferroptosis resistance and metabolism reprogramming may provide new strategies for tumor treatment and drug development based on ferroptosis.


Asunto(s)
Ferroptosis , Cardiopatías , Neoplasias , Humanos , Terapia Combinada , Desarrollo de Medicamentos , Neoplasias/tratamiento farmacológico
6.
Artículo en Inglés | MEDLINE | ID: mdl-37522880

RESUMEN

Pulmonary sequestration (PS) is a rare congenital lung malformation that is more common in the left lower lobe. In 95% of cases, the artery supplying the sequestration usually originates from the thoracic and abdominal aorta. We report a rare intralobular PS case for a feeding artery from the ascending aorta. Angio-computed tomography should be performed for diagnosis once PS is suspected.

7.
Proc Natl Acad Sci U S A ; 120(22): e2220148120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216506

RESUMEN

Exploring the potential lead compounds for Alzheimer's disease (AD) remains one of the challenging tasks. Here, we report that the plant extract conophylline (CNP) impeded amyloidogenesis by preferentially inhibiting BACE1 translation via the 5' untranslated region (5'UTR) and rescued cognitive decline in an animal model of APP/PS1 mice. ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1) was then found to mediate the effect of CNP on BACE1 translation, amyloidogenesis, glial activation, and cognitive function. Through analysis of the 5'UTR-targetd RNA-binding proteins by RNA pulldown combined with LC-MS/MS, we found that FMR1 autosomal homolog 1 (FXR1) interacted with ARL6IP1 and mediated CNP-induced reduction of BACE1 by regulating the 5'UTR activity. Without altering the protein levels of ARL6IP1 and FXR1, CNP treatment promoted ARL6IP1 interaction with FXR1 and inhibited FXR1 binding to the 5'UTR both in vitro and in vivo. Collectively, CNP exhibited a therapeutic potential for AD via ARL6IP1. Through pharmacological manipulation, we uncovered a dynamic interaction between FXR1 and the 5'UTR in translational control of BACE1, adding to the understanding of the pathophysiology of AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Regiones no Traducidas 5' , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Cromatografía Liquida , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem
8.
Artículo en Inglés | MEDLINE | ID: mdl-36267087

RESUMEN

Background: Eucommia ulmoides Oliver (EU) is a plant used in Chinese medicine as a medicinal herb to treat autoimmune and inflammatory conditions. We used network pharmacology to examine the active ingredients and estimate the main targets and pathways affected by EU when it is used to treat ankylosing spondylitis (AS). Materials and Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to search for active ingredients in EU and their target proteins. The GeneCards Database was used to find AS-related targets. The targets from the EU and AS searches that coincided were selected by constructing a Venn diagram. Then, a STRING network platform and Cytoscape software were used to analyse the protein-protein interaction (PPI) network and key targets. The strong affinity between EU and its targets was confirmed using molecular docking techniques. The Gene Ontology and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets was performed using the database for annotation, visualization, and integrated discovery online tool. Results: The number of active ingredients against AS in EU was discovered to be 28. Major targets against AS in the PPI network and core targets analyses were identified as IL-1B, PTGS2, IL-8, nMMP-9, CCL2, MYC, and IL-2. Furthermore, molecular docking studies showed the strong affinity between EU's bioactive molecules and their AS targets. Enrichment analysis revealed that active ingredients from EU were involved in a variety of biological processes, including the response to molecules derived from bacteria, extracellular stimuli, nutrient levels, and the regulation of reactive oxygen species, all of which are mediated by interleukin-17, TNF-α, and other signalling pathways. Conclusion: The therapy for AS using EU involves a multitarget, multipathway, and multiselection mechanism that includes anti-inflammatory and analgesic effects. This study provides a theoretical basis for future research into targeted molecular therapies for AS.

9.
Front Surg ; 9: 892562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111236

RESUMEN

Objective: This study aimed to determine the risk factors for severe lung injury (SLI) (partial pressure of oxygen/fraction of inspired oxygen <150) after radical surgery for tetralogy of Fallot with pulmonary stenosis (TOF/PS) in children. Method: A retrospective analysis was conducted including a total of 287 children with TOF/PS aged below 10 years (including 166 males) who had undergone radical surgery at the Center of Pediatric Heart Disease of the Beijing Anzhen Hospital (China) from 2018 to 2020. Results: A total of 83 cases (28.9%) had SLI after surgery. Univariate analysis showed that age, weight, pulmonary artery index (PAI), cardiopulmonary bypass (CPB) time, and polymorphonuclear leukocyte (PMN) percentage on the first day after surgery were risk factors for postoperative SLI. Multivariate logistic regression analysis showed that PAI, PMN percentage on the first day postoperatively, and CPB time were independent risk factors for SLI after surgery. The prediction model was established as follows: Logit(P) = 2.236 + 0.009*CPB-0.008*PAI-0.035*PMN, area under the curve (AUC) = 0.683, P < 0.001, sensitivity 65.8%, and specificity 68.6%. Following surgery, static lung compliance was significantly lower in the SLI group compared with the routine group. Complication rates and mortality were significantly higher in the SLI than in the routine group. Ventilator support times, the length of intensive care unit stays, and the total lengths of hospital stay were significantly longer in the SLI than in the routine group. Conclusion: The occurrence of SLI following radical surgery for TOF in children significantly affected postoperative recovery, and PAI, PMN percentage on the first day postoperatively, and CPB time were independent risk factors for SLI.

10.
Free Radic Biol Med ; 182: 219-231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271998

RESUMEN

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and major cause of cancer death in the world. Ferroptosis is a recently identified type of regulated cell death. Increasing evidence has shown that ferroptosis plays an important regulatory role in the occurrence and development of cancer. This study identified TIGAR as a potential regulator of ferroptosis resistance in the development of CRC. We showed that TIGAR expression in CRC tissues is significantly higher than that in adjacent normal tissues. Knockdown of TIGAR significantly caused an increase in erastin-induced ferroptosis in SW620 and HCT116 cells. Notably, knockdown of TIGAR significantly decreased GSH/GSSG ratio, increased lipid peroxidation production, and facilitated the accumulation of lipid peroxidation product malondialdehyde (MDA), and rendered CRC cells more sensitive to erastin induced ferroptosis. Furthermore, TIGAR inhibition repressed SCD1 expression in a redox and AMPK-dependent manner. Thus, these results suggest that TIGAR induces ferroptosis resistance in CRC cells via the ROS/AMPK/SCD1 signaling pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Neoplasias Colorrectales , Ferroptosis , Monoéster Fosfórico Hidrolasas , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Colorrectales/metabolismo , Ferroptosis/genética , Células HCT116 , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estearoil-CoA Desaturasa/metabolismo
11.
Arch Biochem Biophys ; 708: 108964, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119480

RESUMEN

Cancer cells can metabolize glutamine to replenish TCA cycle intermediates for cell survival. Glutaminase (GLS1) is over-expressed in multiple cancers, including colorectal cancer (CRC). However, the role of GLS1 in colorectal cancer development has not yet fully elucidated. In this study, we found that GLS1 levels were significantly increased in CRC cells. Knockdown of GLS1 by shRNAs as well as GLS1 inhibitor BPTES decreased DLD1 and SW480 cell proliferation, colony formation and migration. Knockdown of GLS1 as well as BPTES induced reactive oxygen species (ROS) production, down-regulation of GSH/GSSG ratio, an decrease in Nrf2 protein expression and an increase in cytoplasmic Nrf2 protein expression in DLD1 and SW480 cells. Furthermore, Knockdown of GLS1 as well as BPTES inhibited autophagy pathway, antioxidant NAC and Nrf2 activator could reversed inhibition of GLS1-mediated an decrease in autophagic flux in DLD1 and SW480 cells. Depletion of GLS1-induced inhibition of DLD1 and SW480 CRC cell proliferation, colony formation and migration was reversed by autophagy inducer rapamycin. These results suggest that targeting GLS1 might be a new potential therapeutic target for the treatment of CRC.


Asunto(s)
Autofagia/genética , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Glutaminasa/deficiencia , Glutaminasa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Oxidación-Reducción
12.
Plant Cell Physiol ; 61(12): 2055-2066, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32966570

RESUMEN

Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Oryza/metabolismo , Proteínas de Plantas/fisiología , Dedos de Zinc/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Oryza/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Plantones/metabolismo
13.
J Clin Invest ; 130(12): 6490-6509, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853179

RESUMEN

Astrocytes have multiple functions in the brain, including affecting blood vessel (BV) homeostasis and function. However, the underlying mechanisms remain elusive. Here, we provide evidence that astrocytic neogenin (NEO1), a member of deleted in colorectal cancer (DCC) family netrin receptors, is involved in blood vessel homeostasis and function. Mice with Neo1 depletion in astrocytes exhibited clustered astrocyte distribution and increased BVs in their cortices. These BVs were leaky, with reduced blood flow, disrupted vascular basement membranes (vBMs), decreased pericytes, impaired endothelial cell (EC) barrier, and elevated tip EC proliferation. Increased proliferation was also detected in cultured ECs exposed to the conditioned medium (CM) of NEO1-depleted astrocytes. Further screening for angiogenetic factors in the CM identified netrin-1 (NTN1), whose expression was decreased in NEO1-depleted cortical astrocytes. Adding NTN1 into the CM of NEO1-depleted astrocytes attenuated EC proliferation. Expressing NTN1 in NEO1 mutant cortical astrocytes ameliorated phenotypes in blood-brain barrier (BBB), EC, and astrocyte distribution. NTN1 depletion in astrocytes resulted in BV/BBB deficits in the cortex similar to those in Neo1 mutant mice. In aggregate, these results uncovered an unrecognized pathway, astrocytic NEO1 to NTN1, not only regulating astrocyte distribution, but also promoting cortical BV homeostasis and function.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica , Netrina-1/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Netrina-1/genética
14.
Arch Biochem Biophys ; 685: 108349, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32209309

RESUMEN

Breast cancer has the highest incidence and mortality in the female population. Forkhead box M1 (FOXM1) known as a transcription factor is upregulated and associated with poor prognosis in a variety of cancers. However, the molecular mechanisms of FOXM1 on breast cancer progression are poorly understood. In this study, we found that FOXM1 was up-regulated in breast cancer. FOXM1 promoted cell proliferation, clonal formation, and migration capacity in triple negative breast cancer by increasing transcriptional activity of YAP1. FOXM1 also maintained cell stemness via the Hippo pathway. The YAP1-TEAD binding inhibitor Verteporfin reduced the transcription level of OCT4 and NANOG but the Hippo pathway activator XMU-MP-1 could increase the transcription level of OCT4 and NANOG. In summary, our findings indicated that FOXM1 promoted breast cancer progression through the Hippo pathway, and it was suggested a new strategy to treat breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Proteína Forkhead Box M1/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Biomarcadores/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteína Forkhead Box M1/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación/genética , Factores de Transcripción/química , Regulación hacia Arriba , Proteínas Señalizadoras YAP
15.
Life Sci ; 241: 117114, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31790687

RESUMEN

AIMS: Colorectal cancer (CRC) is the fourth leading cause of cancer-related mortality worldwide. Over-expression of tetraspanin 8 (TSPAN8) is related to the development and progression of CRC. Whether TSPAN8 plays a role in the growth of colorectal cancer and its epigenetic mechanisms regulated by Lysine Specific Demethylase 1 (LSD1) are still unknown. MAIN METHODS: In this study, RT-PCR and western blotting were used to analyze the mRNA and protein expression, respectively; cell viability was assayed with MTS analysis; cell migration was measured with Trans-well analysis. KEY FINDINGS: In the present study, the results indicated that the mRNA levels of LSD1 and TSPAN8 in CRC were significantly higher than that in corresponding adjacent non-tumor tissue. Down-regulation of LSD1 or TSPAN8 as well as LSD1 inhibitor Tranylcypromine hemisulfate inhibited the proliferation and migration of CRC cells, while over-expression of LSD1 exhibited opposite effects. LSD1 up-regulated TSPAN8 expression and reduced H3K9me2 occupancy on the TSPAN8 promoter in CRC cells. TSPAN8 promoted epithelial-mesenchymal transition (EMT) in CRC cells in LSD1-dependent manner. SIGNIFICANCE: TSPAN8 may be considered as a promising biomarker for the diagnosis and prognosis in patients with CRC. Furthermore, TSPAN8 could be a novel therapeutic target and potent LSD1 inhibitors could be designed and developed in the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Histona Demetilasas/metabolismo , Tetraspaninas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Regiones Promotoras Genéticas , Tetraspaninas/genética
16.
Can J Cardiol ; 35(12): 1851-1856, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31813511

RESUMEN

BACKGROUND: The relationship between clinical outcomes and gene mutations in Chinese pediatric patients with idiopathic and heritable pulmonary arterial hypertension (PAH) is unclear. METHODS: We retrospectively studied the clinical characteristics and outcomes of pediatric patients who visited Beijing Anzhen Hospital from September 2008 to December 2018. RESULTS: Eighty-two pediatric patients were included. Forty-two gene mutations were identified in 41 patients (50%), including 25 mutations in BMPR2, 5 mutations in ACVRL1, 3 mutations each in ABCA3 and NOTCH3, 2 mutations each in KCNK3 and HTR2B, 1 mutation in ENG, and 1 mutation in EIF2AK4. The mean age at diagnosis of PAH was 86.4 ± 55.1 months. Forty-eight patients (twenty-eight mutation carriers) underwent cardiac catheterization examinations, with acute vasodilator testing performed simultaneously. Results showed that mutation carriers demonstrated a higher pulmonary vascular resistance index (P = 0.037). Patients with gene mutations responded poorly to vasodilators (P = 0.001). The 1-, 2-, and 3-year survival rates of mutation noncarriers were 95.1%, 87.8%, and 82.5% respectively; while for mutation carriers, the proportions were 86.6% (P = 0.216), 63.8% (P = 0.021), and 52.2% (P = 0.010), respectively. Cardiac index was an independent predictor of death (P = 0.005; odds ratio [OR] 2.16, 95% confidence interval [CI] 1.258-3.704), as well as RAP (P = 0.01; OR 1.26, 95% CI 1.056-1.503). CONCLUSIONS: In our cohort of Chinese pediatric patients, those with an identified gene mutation demonstrated worse clinical outcomes. Therefore, early gene screening for pediatric patients with idiopathic and heritable PAH is recommended, and more aggressive treatment for mutation carriers may be advisable.


Asunto(s)
Causas de Muerte , Hipertensión Pulmonar Primaria Familiar/epidemiología , Hipertensión Pulmonar Primaria Familiar/genética , Predisposición Genética a la Enfermedad/epidemiología , Hipertensión Arterial Pulmonar/epidemiología , Hipertensión Arterial Pulmonar/genética , Niño , Preescolar , China , Estudios de Cohortes , Hipertensión Pulmonar Primaria Familiar/diagnóstico , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Femenino , Regulación de la Expresión Génica , Pruebas Genéticas/métodos , Genotipo , Humanos , Estimación de Kaplan-Meier , Modelos Logísticos , Masculino , Pediatría , Fenotipo , Prevalencia , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia , Vasodilatadores/uso terapéutico
17.
Exp Cell Res ; 379(2): 182-190, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30978340

RESUMEN

Lysine demethylase 5B (KDM5B) is up-regulated in many cancers, including breast cancer. However, the underlying metabolic mechanisms of KDM5B on breast cancer progression are poorly understood. Here, we showed that KDM5B expression positively correlates with metastasis in breast cancer. Cell functional analyses were demonstrated that KDM5B knockdown and KDM5B inhibitor AS-8351 inhibited breast cancer cell proliferation and migration. Furthermore, we reported that KDM5B knockdown and AS-8351 reversed epithelial-mesenchymal transition (EMT) and decreased the protein levels of fatty acid synthase (FASN) and ATP citrate lyase (ACLY) in MCF-7 and MDA-MB-231 cells. Interestingly, we found that activation of AMP-activated protein kinase (AMPK) signaling pathway is involved in KDM5B-mediated EMT and lipid metabolism reprogramming in breast cancer cells. As a result, silencing of KDM5B-induced activation of AMPK signaling pathway inhibited breast cancer cell proliferation and migration. Taken together, our findings indicated that KDM5B was a novel regulator of lipid metabolism reprogramming, and it was suggested a new strategy to treat breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos
19.
J Cell Mol Med ; 23(5): 3451-3463, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30809937

RESUMEN

Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF-E2-related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch-like ECH-associated protein 1 (Keap1) reduced the expression of glucose-6-phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia-inducing factor 1α (HIF-1α) in MCF-7 and MDA-MB-231 cells. Overexpression of Nrf2 up-regulated the expression of Notch1 via G6PD/HIF-1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES-1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2-driven breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Glucosafosfato Deshidrogenasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Notch1/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Modelos Biológicos , Vía de Pentosa Fosfato , Transducción de Señal
20.
Plant Physiol ; 179(4): 1330-1342, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30617050

RESUMEN

Magnaporthe oryzae is a fungal pathogen that causes rice (Oryza sativa) blast. SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are key components in vesicle trafficking in eukaryotic cells and are known to contribute to fungal pathogen resistance. Syntaxin of Plants121 (SYP121), a Qa-SNARE, has been reported to function in nonhost resistance in Arabidopsis (Arabidopsis thaliana). However, the functions of SYP121 in host resistance to rice blast are largely unknown. Here, we report that the rice SYP121 protein, OsSYP121, accumulates at fungal penetration sites and mediates host resistance to rice blast. OsSYP121 is plasma membrane localized and its expression was obviously induced by the rice blast in both the blast-resistant rice landrace Heikezijing and the blast-susceptible landrace Suyunuo (Su). Overexpression of OsSYP121 in Su resulted in enhanced resistance to blast. Knockdown of OsSYP121 expression in Su resulted in a more susceptible phenotype. However, knockdown of OsSYP121 expression in the resistant landrace Heikezijing resulted in susceptibility to the blast fungus. The POsSYP121 ::GFP-OsSYP121 accumulated at rice blast penetration sites in transgenic rice, as observed by confocal microscopy. Yeast two-hybrid results showed that OsSYP121 can interact with OsSNAP32 (Synaptosome-associated protein of 32 kD) and Vesicle-associated membrane protein714/724. The interaction between OsSYP121 and OsSNAP32 may contribute to host resistance to rice blast. Our study reveals that OsSYP121 plays an important role in rice blast resistance as it is a key component in vesicle trafficking.


Asunto(s)
Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/metabolismo , Inmunidad de la Planta , Proteínas de Plantas/fisiología , Oryza/inmunología , Oryza/microbiología , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA