Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2371694, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38916149

RESUMEN

MYB transcription factor is one of the largest families in plants. There are more and more studies on plants responding to abiotic stress through MYB transcription factors, but the mechanism of some family members responding to salt stress is unclear. In this study, physiological and transcriptome techniques were used to analyze the effects of the R2R3-MYB transcription factor AtMYB72 on the growth and development, physiological function, and key gene response of Arabidopsis thaliana. Phenotypic observation showed that the damage of overexpression strain was more serious than that of Col-0 after salt treatment, while the mutant strain showed less salt injury symptoms. Under salt stress, the decrease of chlorophyll content, the degree of photoinhibition of photosystem II (PSII) and photosystem I (PSI) and the degree of oxidative damage of overexpressed lines were significantly higher than those of Col-0. Transcriptome data showed that the number of differentially expressed genes (DEGs) induced by salt stress in overexpressed lines was significantly higher than that in Col-0. GO enrichment analysis showed that the response of AtMYB72 to salt stress was mainly by affecting gene expression in cell wall ectoplast, photosystem I and photosystem II, and other biological processes related to photosynthesis. Compared with Col-0, the overexpression of AtMYB72 under salt stress further inhibited the synthesis of chlorophyll a (Chla) and down-regulated most of the genes related to photosynthesis, which made the photosynthetic system more sensitive to salt stress. AtMYB72 also caused the outbreak of reactive oxygen species and the accumulation of malondialdehyde under salt stress, which decreased the activity and gene expression of key enzymes in SOD, POD, and AsA-GSH cycle, thus destroying the ability of antioxidant system to maintain redox balance. AtMYB72 negatively regulates the accumulation of osmotic regulatory substances such as soluble sugar (SS) and soluble protein (SP) in A. thaliana leaves under salt stress, which enhances the sensitivity of Arabidopsis leaves to salt. To sum up, MYB72 negatively regulates the salt tolerance of A. thaliana by destroying the light energy capture, electron transport, and antioxidant capacity of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Estrés Salino , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Estrés Oxidativo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
2.
Toxics ; 12(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38787101

RESUMEN

To explore the contamination status and identify the source of the heavy metals in the sediments in the major inflow rivers of Dianchi Lake in China, sediment samples were collected and analyzed. Specifically, the distribution, source, water quality, and health risk assessment of the heavy metals were analyzed using correlation analysis (CA), principal component analysis (PCA), the heavy metal contamination factor (Cf), the pollution load index (PLI), and the potential ecological risk index (PERI). Additionally, the chemical fractions were analyzed for mobility characteristics. The results indicate that the average concentration of the heavy metals in the sediment ranked in the descending order of Zn > Cr > Cu > Pb > As > Ni > Cd > Hg, and most of the elements existed in less-mobile forms. The Cfwas in the order of Hg > Zn > Cd > As > Pb > Cr > Ni; the accumulation of Hg, Zn, Cd, and As was obvious. Although the spatial variability of the heavy metal contents was pronounced, the synthetical evaluation index of the PLI and PERI both reached a high pollution level. The PCA and CA results indicate that industrial, transportation, and agricultural emissions were the dominant factors causing heavy metal pollution. These results provide important data for improving water resource management efficiency and heavy metal pollution prevention in Dianchi Lake.

3.
Transl Oncol ; 40: 101843, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101175

RESUMEN

Previous studies have demonstrated that carbohydrate sulfotransferase family proteins (CHSTs) play a crucial role in the extracellular matrix structural constituent and cancer progression, however, the effect of CHSTs on gastric cancer is still superficial. To investigate these, our study seeks to provide a comprehensive understanding of CHSTs' expression, immune infiltration, and prognostic implications in gastric cancer, utilizing data from the TCGA, GEO and GTEx databases. Furthermore, we conducted experimental validation to elucidate the role of CHST14 specifically in gastric cancer. Our findings suggest that most CHSTs were highly expressed in gastric cancer. Gene copy number variations further indicated prevalent CHSTs amplification in gastric cancer, pointing to its potential relevance in disease progression. Intriguingly, we noted strong positive correlations between most CHSTs and immune cell infiltration. Importantly, most members of CHSTs were related to OS and PFI with gastric cancer, with particular emphasis on CHST14 and CHST9. Multifactorial regression analysis indicates that CHST14 is an independent prognostic factor influencing the overall survival of gastric cancer patients. In further experimental validation, our results demonstrate elevated expression of CHST14 in gastric cancer, and knocking down CHST14 inhibits gastric cancer cell proliferation, invasion, migration and EMT. Additionally, CHST14 may exert its function through the regulation of the Wnt pathway. In summary, our study comprehensively analyzes the hitherto undescribed role of CHSTs in gastric cancer through the analysis of multi-omics data. Importantly, we identify CHST14 as a pivotal promoter in the malignant progression of gastric cancer, offering potential targets for gastric cancer therapy.

4.
Heliyon ; 9(11): e21353, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928022

RESUMEN

Composites of amorphous ZrP and N-doped carbon were prepared in a one-step pyrolysis process instead of general post-loading technique. Owing to their mesoporous structure (6-10 nm) and Zr content (up to 41 wt%), the amphoteric materials have potential use in the cycloaddition of CO2 to epoxides, which is an acid‒base tandem process including the ring opening of epoxides and the addition of CO2. Substantial work has been done on how starting materials impact the structure and performance of composite materials. The coordination between metal and melamine has been confirmed, and it can be implanted in the melamine-polymer initiation of formation of porous metal-carbon materials. The composite catalysts exhibit amphoteric properties, present broad-spectrum adsorption, and finally produce carbonates via cycloaddition of CO2 to epoxides. It is remarkable that the multiple characteristics of porous solids are stabilized, and no significant loss of catalytic performance is observed after four cycles.

5.
Nat Commun ; 14(1): 7351, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963872

RESUMEN

Production of secondary metabolites is controlled by a complicated regulatory network in eukaryotic cells. Several layers of regulators are involved in this process, ranging from pathway-specific regulation, to epigenetic control, to global regulation. Here, we discover that interaction of an RNA-binding protein CsdA with a regulator RsdA coordinates fungal secondary metabolism. Employing a genetic deletion approach and transcriptome analysis as well as metabolomics analysis, we reveal that CsdA and RsdA synergistically regulate fungal secondary metabolism comprehensively. Mechanistically, comprehensive genetic and biochemical studies prove that RsdA and CsdA co-localize in the nucleus and physically interact to achieve their functions. In particular, we demonstrate that CsdA mediates rsdA expression by binding specific motif "GUCGGUAU" of its pre-mRNA at a post-transcriptional level. We thus uncover a mechanism in which RNA-binding protein physically interacts with, and controls the expression level of, the RsdA to coordinate fungal secondary metabolism.


Asunto(s)
Perfilación de la Expresión Génica , Precursores del ARN , Metabolismo Secundario/genética , Proteínas de Unión al ARN/genética
6.
Cell Mol Life Sci ; 80(11): 312, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796333

RESUMEN

Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.


Asunto(s)
Proteínas de Caenorhabditis elegans , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Inmunidad Innata , Proteínas de Unión al ADN/metabolismo , Mamíferos/metabolismo , Fosfatasas de Especificidad Dual
7.
Plant Physiol Biochem ; 201: 107876, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37413942

RESUMEN

Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.


Asunto(s)
Antioxidantes , Peroxirredoxinas , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacología , Nicotiana/genética , Nicotiana/metabolismo , Peróxido de Hidrógeno/metabolismo , Cisteína/metabolismo , Fotosíntesis , Oxidorreductasas/metabolismo , Peroxidasa/metabolismo , Clorofila
8.
Nat Commun ; 13(1): 6361, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289208

RESUMEN

Biosynthesis of the flavonoid naringenin in plants and bacteria is commonly catalysed by a type III polyketide synthase (PKS) using one p-coumaroyl-CoA and three malonyl-CoA molecules as substrates. Here, we report a fungal non-ribosomal peptide synthetase -polyketide synthase (NRPS-PKS) hybrid FnsA for the naringenin formation. Feeding experiments with isotope-labelled precursors demonstrate that FnsA accepts not only p-coumaric acid (p-CA), but also p-hydroxybenzoic acid (p-HBA) as starter units, with three or four malonyl-CoA molecules for elongation, respectively. In vitro assays and MS/MS analysis prove that both p-CA and p-HBA are firstly activated by the adenylation domain of FnsA. Phylogenetic analysis reveals that the PKS portion of FnsA shares high sequence homology with type I PKSs. Refactoring the biosynthetic pathway in yeast with the involvement of fnsA provides an alternative approach for the production of flavonoids such as isorhamnetin and acacetin.


Asunto(s)
Flavonoides , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Filogenia , Espectrometría de Masas en Tándem , Péptido Sintasas/metabolismo , Malonil Coenzima A , Catálisis
9.
Front Genet ; 13: 968544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160010

RESUMEN

The formation of adventitious roots (ARs) is vital for the vegetative propagation of poplars. However, the relevant mechanisms remain unclear. To reveal the underlying molecular mechanism, we used RNA-seq to investigate the transcriptional alterations of poplar cuttings soaked in water for 0, 2, 4, 6, 8, and 10 d; 3,798 genes were differentially expressed at all the time points, including 2,448 upregulated and 1,350 downregulated genes. Biological processes including "cell cycle," "photosynthesis," "regulation of hormone levels," and "auxin transport" were enriched in the differentially expressed genes (DEGs). KEGG results showed that the common DEGs were most enriched in the pathway of "Carbon fixation in photosynthetic organisms" and "Starch and sucrose metabolism." We further dissected 38 DEGs related to root and auxin, including two lateral root primordium 1 (LRP1), one root meristem growth factor (RGF9), one auxin-induced in the root (AIR12), three rooting-associated genes (AUR1 and AUR3), eight auxin transcription factors (ARFs and LBDs), 10 auxin respective genes (SAURs and GH3s), nine auxin transporters (PINs, ABCs, LAX2, and AUXs), and four auxin signal genes (IAAs and TIR1). We found that the rooting abilities of poplar cuttings with and without leaves are different. By applying different concentrations of IBA and sucrose to the top of cuttings without leaves, we found that 0.2 mg/ml IBA and 2 mg/ml sucrose had the best effect on promoting AR formation. The transcriptome results indicated photosynthesis may influence AR formation in poplar cuttings with leaves and revealed a potential regulatory mechanism of leafy cuttage from poplar cuttings. In addition, we provided a new perspective to resolve rooting difficulties in recalcitrant species.

10.
Front Oncol ; 12: 841771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992838

RESUMEN

Purpose: To compare the difference between magnetic resonance imaging (MRI) and computed tomography (CT) in delineating the target area of lung cancer with atelectasis. Method: A retrospective analysis was performed on 15 patients with lung cancer accompanied by atelectasis. All positioning images were transferred to Eclipse treatment planning systems (TPSs). Six MRI sequences (T1WI, T1WI+C, T1WI+C Delay, T1WI+C 10 minutes, T2WI, DWI) were registered with positioning CT. Five radiation oncologists delineated the tumor boundary to obtain the gross tumor volume (GTV). Conformity index (CI) and dice coefficient (DC) were used to measure differences among observers. Results: The differences in delineation mean volumes, CI, and DC among CT and MRIs were significant. Multiple comparisons were made between MRI sequences and CT. Among them, DWI, T2WI, and T1WI+C 10 minutes sequences were statistically significant with CT in mean volumes, DC, and CI. The mean volume of DWI, T2WI, and T1WI+C 10 minutes sequence in the target area is significantly smaller than that on the CT sequence, but the consistency is higher than that of CT sequences. Conclusions: The recognition of atelectasis by MRI was better than that by CT, which could reduce interobserver variability of primary tumor delineation in lung cancer with atelectasis. Among them, DWI, T2WI, T1WI+C 10 minutes may be a better choice to improve the GTV delineation of lung cancer patients with atelectasis.

11.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684514

RESUMEN

Perilla frutescens (L.) Britton, an important pharmaceutical and nutraceutical crop, is widely cultivated in East Asian countries. In this review, we present the latest research findings on the phytochemistry and pharmacological activities of P. frutescens. Different databases, including PubMed, Scopus, CNKI, Agricola, Scifinder, Embase, ScienceDirect, DOAJ, and Web of Science, were searched to present the best review. In this review, we clearly represent the active constituents responsible for each and every pharmacological activity, plausible mechanism of action, and maximum inhibitory concentrations, as well as IC50 values. Approximately 400 different bioactive compounds, including alkaloids, terpenoids, quinines, phenylpropanoids, polyphenolic compounds, flavonoids, coumarins, anthocyanins, carotenoids, neolignans, fatty acids, polycosanols, tocopherols, and sitosterols, have been reported in the leaves, seeds, roots, and aerial parts of P. frutescens. The bioactive constituents of P. frutescens exhibited different enzyme-inhibition properties, including antihyaluronidase effects and aldose reductase inhibitory, α-glucosidase inhibitory, xanthine oxidase inhibitory, and tyrosinase inhibitory properties. P. frutescens showed strong anti-inflammatory, antidepressant, anti-spasmodic, anticancer, antioxidant, antimicrobial, insecticidal, neuroprotective, and hepatoprotective effects. Hence, the active constituents of P. frutescens used in the treatment of diabetes and diabetic complications (retinopathy, neuropathy, and nephropathy), prevention of hyperuricemia in gout patients, hyper pigmentation, allergic conditions, skin inflammation, skin allergy, atopic dermatitis, periodontosis, androgenic alopecia, gastric inflammation, oesophagitis, carcinogenesis, cardiovascular, Alzheimer's, Parkinson's, and cerebral ischemic disorders. Furthermore, we revealed the most active constituents and possible mechanisms of the pharmacological properties of P. frutescens.


Asunto(s)
Perilla frutescens , Antocianinas/análisis , Humanos , Inflamación , Perilla frutescens/química , Hojas de la Planta/química , Xantina Oxidasa
12.
ACS Omega ; 6(41): 26910-26918, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693112

RESUMEN

Edible mushrooms are important nutraceutical sources of foods and drugs, which can produce various nutritional ingredients including all essential amino acids. The method of rapid screening for the strains producing specific functional components is very indispensable. Homocitrate synthase is one of the key enzymes in the α-aminoadipate pathway for lysine biosynthesis and has preferable sequence conservation in Agaricales. Based on the blast of homocitrate synthase homologous genes of strains of Agaricales, we achieved combinations of degenerate primers as molecular markers to rapidly screen the lysine-producing edible mushrooms. The experimental results revealed that the consistency between PCR amplification and HPLC analysis attained 82 and 75% in strains of Agaricales and Polyporales, respectively. The finding showed that the molecular marker has higher universality for screening edible mushroom resources of Agaricales. This PCR-based approach shows excellent potential in evaluating and discriminating edible wild-grown mushrooms with high lysine content in Agaricales.

13.
Front Oncol ; 11: 652365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937059

RESUMEN

PURPOSE: This study aimed to analyze the recurrence patterns of thoracic esophageal squamous cell carcinoma (ESCC) after radical surgery, and to understand its implication in the clinical target volume (CTV) design of postoperative radiotherapy (PORT) in patients with ESCC. METHODS AND MATERIALS: A total of 428 recurrent ESCC patients after radical surgery between 2014 and 2018 were included in this study. Recurrence patterns, especially anastomotic and regional lymph node recurrence (LNR), were analyzed. A T-shaped CTV were proposed for PORT and were evaluated whether it could cover most of regional LNR. RESULTS: These patients all experienced anastomotic and/or regional LNR. Among the 428 patients, 27 cases (6.3%) had anastomotic recurrence only, and184 cases (43.0%) had LNR only. Those sites with an LNR rate higher than 15% in upper thoracic ESCC were as follows: No.101, No.104R, No.104L, No.106recR, No.106recL, No.106pre, No.106tb, No.107, and No. 109. Those with middle thoracic ESCC were as follows: No.104R, No.104L, 106recR, No.106recL, No.106pre, No.106tb, and No.107. Lastly, individuals with lower thoracic ESCC were as follows: No.104L, 106recR, No.106recL, No. 106pre, No. 106tb, No.107, and abdominal No. 3. The proportion of LNR not included in the proposed T-shaped CTV was 12.5% (1/8), 4.7% (6/128), and 10.4% (5/48) in the upper, middle, and lower thoracic segments, respectively. CONCLUSIONS: LNR was the most common type of local-regional recurrence in patients after radical surgery. Supraclavicular, superior and middle mediastinal lymph nodes had the highest recurrence rate, the rate of LNR which was outside T-shaped PORT CTV we proposed was less than 15%.

14.
J Food Sci ; 86(2): 306-318, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33462808

RESUMEN

In this study, response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) process of perilla seed meal polysaccharides (PSMP). The optimal conditions for UAE of PSMP were: liquid-solid ratio of 26.00 mL/g, ultrasonic temperature of 43.00 °C, ultrasonic time of 52.00 min, and ultrasonic power of 229.00 W, the optimal conditions lead to an yield of 6.137 ± 0.062%. The structural characteristics of molecular weight, compositional monosaccharides, and glycosidic linkages were determined by size exclusion chromatography with multiangle light scattering, gas chromatography-mass spectrometry, Fourier-transfer infrared spectroscopy, and nuclear magnetic resonance detections. Scanning electron microscopy analysis showed that many holes were formed on the surface of PSM after UAE. The antioxidant activities of PSMP were investigated using various assays in vitro. The results suggested that PSMP is potential natural resource of antioxidants for medicine and functional foods. PRACTICAL APPLICATION: The selection of raw material perilla seed meal is conducive to the comprehensive utilization of edible resources. With consumer demands for newly developed foods with natural, wholesome ingredients are increasing nowadays. This study provides effective reference for in-depth research on other medicine-food dual-use resources. Ultrasound-assisted extraction (UAE) is a promising alternative method for hot water reflux extraction (HWRE) of polysaccharides for advantages of high efficiency and energy saving. In this work, the UAE process optimized by response surface methodology is more suitable for industrial application that can effectively decrease total cost of production by reducing the extraction temperature, shortening extraction time, and increasing raw material utilization.


Asunto(s)
Antioxidantes , Perilla/química , Polisacáridos/aislamiento & purificación , Semillas/química , Ondas Ultrasónicas , Antioxidantes/análisis , Glicósidos/química , Peso Molecular , Monosacáridos/análisis , Polisacáridos/química , Temperatura
15.
Talanta ; 219: 121209, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887113

RESUMEN

Theranostic nano-drug delivery systems are promising candidates for early diagnosis and treatment of tumors. However, it is a great challenge to achieve accurate intracellular delivery and stimuli-responsive drug release with the enhanced anti-tumor effects and reduced side effects. Herein we report the fabrication of polyamide-amine (PAMAM) dendrimer grafted persistent luminescence nanoparticles (PLNPs) via in situ growth of PAMAM on the surface of PLNPs and its application in targeted bioimaging and drug delivery. The developed PLNPs-PAMAM possesses strong renewable near-infrared persistent luminescence for imaging and gives abundant terminal groups for further functionalization. Aptamer AS1411 coupled to the PLNPs-PAMAM surface can specifically bind to the over-expressed nucleolin on the membrane of tumor cells and improve the intracellular accumulation of the nanoparticles. Doxorubicin (DOX) is loaded on PLNPs-PAMAM by a pH-sensitive hydrazine, can be specifically released in the intracellular acid environment, leading to apoptosis of HeLa tumor cells and inhibition of tumor growth. The as-prepared smart drug delivery nanoplatform with persistent luminescence, PLNPs-PAMAM-AS1411/DOX, shows a good application prospect for precise cancer theranostics.


Asunto(s)
Dendrímeros , Nanopartículas , Neoplasias , Preparaciones Farmacéuticas , Doxorrubicina/uso terapéutico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Luminiscencia , Neoplasias/tratamiento farmacológico
16.
Anal Chem ; 92(1): 1179-1188, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31818096

RESUMEN

Multifunctional nanoprobes with both imaging and drug delivery capabilities represent an emerging approach to the diagnosis and treatment of tumor. However, poor accumulation in tumor cells and low drug availability are the main limitations for their further application. Here we show a pH-driven targeting nanoprobe with dual-responsive drug release for persistent luminescence imaging and chemotherapy of tumor. The nanoprobe is constructed by conjugating the pH-low-insertion-peptide (pHLIP) to the surface of the core-shell structure of mesoporous silica-coated persistent luminescence nanoparticles (MSPLNPs) with the peptide GFLG and disulfide bond as bridges. The pHLIP functionalized nanoprobe exhibits higher cellular uptake for A549 and HepG2 cells in an acidic extracellular microenvironment (pH < 6.5) than in normal physiological condition (pH 7.4). The nanoprobe possesses well-defined NIR persistent luminescence performance and can be effectively accumulated in the tumor site, leading to the visual HepG2 tumor target imaging without autofluorescence interference. Furthermore, the nanoprobe realizes the dual-responsive release of doxorubicin loaded in the mesoporous channels in systems containing cathepsin B and glutathione, and can effectively kill tumor cells and inhibit the growth of tumor. This integrated nanoprobe possesses great potential for the diagnosis and treatment of tumors with high specificity and efficiency.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Materiales Biocompatibles/química , Doxorrubicina/farmacología , Nanopartículas/química , Imagen Óptica , Células A549 , Animales , Antibióticos Antineoplásicos/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Luminiscencia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Péptidos/química , Péptidos/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Microambiente Tumoral/efectos de los fármacos
17.
Environ Sci Pollut Res Int ; 25(7): 6899-6908, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29273981

RESUMEN

The development of eluent is the key to soil washing remediation, and a compound eluent was constructed using the prepared citric acid fermentation broth and saponin in this study. It displayed a good washing performance for Pb, Cu, Cr, and Cd in red soil, and the removal rates, especially Pb, gained an improvement compared with a single eluent. Based on this, the compound eluent was applied to remediation of Pb-contaminated soil in mining area; the desorption of Pb is a heterogeneous diffusion process, and Pb in large particle size soil is relatively easy to remove. An available response surface analysis model was established; its P < 0.0001 is very significant, and the P of the missing item is 0.1152. The degree of influence of three significant factors on removal of Pb is liquid-to-solid ratio > washing time > saponin concentration, and liquid-to-solid ratio and washing time show interaction. Moreover, the Pb removal rate can reach 56.20% under the optimized conditions: 0.25% saponin concentration, 20 mL/g liquid-to-solid ratio, and 320-min washing time, which is close to the predicted value of 56.20% with a difference of 1.41%. In addition, most of the active Pb was removed and environmental risks were lowered after washing.


Asunto(s)
Ácido Cítrico/química , Restauración y Remediación Ambiental/métodos , Plomo/análisis , Minería , Saponinas/química , Contaminantes del Suelo/análisis , Fermentación , Tamaño de la Partícula , Suelo/química
18.
RSC Adv ; 8(64): 36858-36868, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35558935

RESUMEN

Chitosan hydrogel microspheres derived from the LiOH/KOH/urea aqueous system demonstrate great characteristics of high mechanical strength, relative chemical inertness, renewability and 3-D fibrous network, making them promising functional supports. This work aims to investigate the tunable Co2+ adsorption behaviors on these robust chitosan microspheres in detail, providing the theoretical basis for optimizing the preparation procedure of chitosan microspheres supported Co3O4 catalysts in the future. The experimental results revealed that the fabricated original chitosan microspheres with more extended chain conformation could display enhanced adsorption capacity for Co2+ at determined concentration both in water and alcohol solutions, which is about 2-7 times higher than that of the conventional chitosan hydrogel microspheres prepared from the acetic acid solution. The kinetic experiments indicated that the adsorption process in water solution agreed with the pseudo-second-order kinetic equation mostly, while the chemical and physical adsorptions commonly contribute to the higher Co2+ adsorption on chitosan microspheres in alcohol solution. Moreover, in both cases, the film diffusion or chemical reaction is the rate limiting process in the initial adsorption stage, and the adsorption of Co2+ on chitosan microspheres can well fit to the Langmuir isotherm. Thermodynamic analysis demonstrated that such adsorption behaviors were dominated by an endothermic (ΔH° > 0) and spontaneous (ΔG° < 0) process.

19.
Environ Sci Pollut Res Int ; 24(10): 9506-9514, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28238181

RESUMEN

The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.


Asunto(s)
Ácido Cítrico/química , Contaminantes del Suelo , Fermentación , Metales Pesados , Suelo/química
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(2): 492-6, 2015 Feb.
Artículo en Chino | MEDLINE | ID: mdl-25970919

RESUMEN

In the present paper, the stoichiometric ratio (R) for the interreaction of DPPH radicals with the antoxidant was employed as a evaluation index for DPPH radicals scavenging activity of antioxidants. This evaluation index was related only with the stoichiometric relationship between DPPH radicals and the antioxidant, not the relationship with the initial DPPH amount and the volume of sample, which could offer a solution for the problem of poor comparability of EC50 under different conditions. A novel photometric micro-titration method was proposed for the determination of the stoichiometric ratio (R) for the interreaction of DPPH radicals with the antoxidant. The titration equation was established based on the absorbance difference (deltaA) of DPPH radicals in the titration process and the added amount of antoxidant. The stoichiometric ratio (R) for the reaction of DPPH radicals with the addition amount of antoxidant was determined by the titration equation obtained, while, the DPPH median elimination concentration (EC50) of antoxidant can be calculated by the stoichiometric ratio (R). The above photometric micro-titration model was verified using rutin as DPPH radicals scavenger. As experiment results, the stoichiometric ratio (R) of DPPH radicals to rutin was determined to be in the range of 1.817-1.846. The calculated value of EC50 was 1.196 x 10(-3), 2.392 x 10(-3), 4.819 x 10(-3) and 7.292 x 10(-3) mg x mL(-1) for 1.12 x 10(-7), 2.24 x 10(-7), 4.48 x 10(-7) and 6.72 x 10(-7) mol of the additon amount of DPPH radicals, respectively. The proposed method has better precision and reliability with smaller amount of sample than conventional method. While, the obtained stoichiometric ratio value (R) of rutin was employed to calculate the rutin median elimination concentration for DPPH EC50) according to the conditions as reported in the literatures, and the calculated results were consistent with that reported in the literatures.


Asunto(s)
Depuradores de Radicales Libres/química , Rutina/química , Fotometría , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...