Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Environ Pollut ; : 125122, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39414061

RESUMEN

Co-contamination of ciprofloxacin (CIP) and Cu(II) is common in marine aquaculture water. However, the transmission and transformation of these substances in natural water matrices are often overlooked. This study sought to assess the impact of Cu(II) on CIP degradation in distilled (DI) and simulated (SI) mariculture water, as well as to develop a relationship between Cu(II), CIP, and its degradation products. First, complexation assays and analog computations revealed that Cu (II) forms complexes by binding to the oxygen atoms of the carbonyl (C=O) and carboxyl (COOH) groups in the CIP molecule. Second, photodegradation experiments showed that Cu(II) significantly hindered the degradation effect of CIP in DI water, while Cu(II) did not significantly hinder the degradation of CIP in SI water. Furthermore, the effect of Cu(II) on the degradation mechanism of CIP was determined by combining quenching and EPR experiments, Materials Studio software calculations, and UPLC-MS results. It was demonstrated that Cu(II) enhanced the production of singlet oxygen (1O2), hydroxyl radicals (•OH), and superoxide radicals (•O2-) in DI water. In the presence of Cu(II), CIP undergoes hydroxylation and decarbonylation reactions, forming hydroxylated and nitroxylated products. Additionally, direct defluorination and cleavage of the piperazine ring occur, followed by complexation reactions with Cu(II). However, in SI water, the production of 1O2 depends on the indirect action of Cu(II) and the excited state transformation of organic matter. Experimental evidence has shown that CIP can create intermediate compounds that include O-O peroxide rings, with or without the presence of Cu(II). When Cu(II) is present, the cyclopropyl group of the CIP molecule is more prone to transformation and so degradation. Finally, the toxicity assessment results indicated that both Cu(II) and SI water increased the toxicity of the degradation products.

2.
Sci Rep ; 14(1): 24775, 2024 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433610

RESUMEN

Sarcopenia is a severe complication affecting patients receiving hemodialysis (HD) treatment over an extended period of time. This cross-sectional study assessed knowledge, attitude, and practice (KAP) towards sarcopenia among maintenance HD patients in Northeastern China between 13 December 2023 and 13 January 2024. A total of 752 questionnaires were collected. Multivariate logistic regression showed that completed high school or vocational secondary school, college or bachelor's degree, and maintenance HD lasting ≥ 11 years were independently associated with proactive practice. The Structural equation modeling (SEM) showed that knowledge directly affected attitude and practice. Moreover, attitude directly affects practice. Maintenance HD patients showed inadequate knowledge, positive attitude, and proactive practice towards sarcopenia. Healthcare providers should focus on educational campaigns to increase patient awareness of sarcopenia, its risk factors, and preventive measures.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Diálisis Renal , Sarcopenia , Humanos , Diálisis Renal/efectos adversos , China/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Encuestas y Cuestionarios , Anciano , Adulto , Factores de Riesgo
3.
BMC Genomics ; 25(1): 953, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402463

RESUMEN

BACKGROUND: The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS: In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION: This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Prunus , Factores de Transcripción , Prunus/genética , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas , Genoma de Planta , Frío
4.
Front Nutr ; 11: 1424334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346648

RESUMEN

Objectives: The objective of this study was to investigate the effect of different harvest times and processing methods on the B vitamins and α-tocopherol contents of Leymus chinensis (Trin.). Methods: L. chinensis was harvested on 11 July (T1 group), 16 July (T2 group), 21 July (T3 group), 26 July (T4 group), and 31 July (T5 group) in 2022 and processed using natural drying and silage fermentation to evaluate fermentation quality, chemical composition, in vitro digestibility and vitamin content. Results: The fermentation quality of L. chinensis silage prepared at all five times of harvest was better. The silage fermentation group showed a significant increase (p < 0.05) in crude protein (CP), thiamin, riboflavin, pyridoxine and α-tocopherol content, a significant decrease (p < 0.05) in water-soluble carbohydrate (WSC) content, and small differences in neutral detergent fibre (NDF), acid detergent fibre (ADF), niacin and pantothenic acid content, when compared to the natural drying group. The content of thiamine, riboflavin, niacin, pantothenic acid and pyridoxine were higher in the pre-harvest period. In silage fermentation, the loss rate of thiamin, riboflavin and pyridoxine was positively correlated with pH and WSC, and the loss rate of thiamin and riboflavin was negatively correlated with lactic acid content. The loss rate of pantothenic acid was negatively correlated with pH and WSC, and positively correlated with lactic acid and ammonia nitrogen. The rate of α-tocopherol synthesis exceeded the rate of catabolism. Conclusion: The content of CP, thiamine, riboflavin, niacin, pantothenic acid and pyridoxine were higher during the early harvest period. Silage fermentation preserved the chemical composition and vitamin content of L. chinensis better than natural drying and had no effect on in vitro digestibility. During silage fermentation, the acidic environment promoted the preservation of thiamin, riboflavin and pyridoxine, but promoted the breakdown of pantothenic acid, α-tocopherol content increased through synthesis.

5.
Cancer Control ; 31: 10732748241287904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323031

RESUMEN

INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, but its pathogenic mechanisms remain unclear. This study aimed to identify the potential biomarkers underlying the diagnosis and treatment of HNSCC. METHODS: Weighted gene co-expression network analysis (WGCNA) followed by pathway enrichment analysis, analysis of infiltrating immune cells, survival analysis, and methylation analysis were applied to identify the potential hub genes underlying the prognosis of HNSCC. The expression of hub genes was validated by immunofluorescence staining. RESULTS: A total of 10,274 differentially expressed genes (DEGs) were identified. Through WGCNA, the yellow module (R2 = 0.33, P = 2e-14) was confirmed to be the most significantly associated with the histological grade of HNSCC, and the "Cell Cycle" proved to be the most enriched signaling pathway. Based on the results of survival analysis and immune cell infiltration, 10 hub genes (HMMR, CENPK, AURKA, CDC25C, FEN1, CKS1B, MAJIN, PCLAF, SPC25, and STAG3) were identified. Eight of these (excluding MAJIN and STAG3) were confirmed by performing survival analysis using another dataset (GSE41613). Further, we identified 4 methylation loci in 3 hub genes (cg15122828 and cg20554926 in HMMR, cg12519992 in CDC25C, and cg2655739 in KIAA0101/PCLAF) as being significantly related to survival. Finally, we demonstrated the high mRNA and protein expression of HMMR and CDC25C in HNSCC patients. CONCLUSION: Two real hub genes (HMMR and CDC25C) and 3 methylation loci were identified that could potentially serve as prognostic and therapeutic targets for HNSCC, which is significant for studying the pathological mechanisms underlying HNSCC and for developing novel therapies for this disease.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/mortalidad , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Análisis de Supervivencia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Proteínas de la Matriz Extracelular
6.
Adv Sci (Weinh) ; : e2406793, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246254

RESUMEN

Across diverse domains of science and technology, electromagnetic (EM) inversion problems benefit from the ability to account for multimodal prior information to regularize their inherent ill-posedness. Indeed, besides priors that are formulated mathematically or learned from quantitative data, valuable prior information may be available in the form of text or images. Besides handling semantic multimodality, it is furthermore important to minimize the cost of adapting to a new physical measurement operator and to limit the requirements for costly labeled data. Here, these challenges are tackled with a frugal and multimodal semantic-EM inversion technique. The key ingredient is a multimodal generator of reconstruction results that can be pretrained, being agnostic to the physical measurement operator. The generator is fed by a multimodal foundation model encoding the multimodal semantic prior and a physical adapter encoding the measured data. For a new physical setting, only the lightweight physical adapter is retrained. The authors' architecture also enables a flexible iterative step-by-step solution to the inverse problem where each step can be semantically controlled. The feasibility and benefits of this methodology are demonstrated for three EM inverse problems: a canonical two-dimensional inverse-scattering problem in numerics, as well as three-dimensional and four-dimensional compressive microwave meta-imaging experiments.

7.
BMC Plant Biol ; 24(1): 883, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342089

RESUMEN

BACKGROUND: AP2/ERF transcription factors are involved in the regulation of growth, development, and stress response in plants. Although the gene family has been characterized in various species, such as Oryza sativa, Arabidopsis thaliana, and Populus trichocarpa, studies on the Prunus sibirica AP2/ERF (PsAP2/ERF) gene family are lacking. In this study, PsAP2/ERFs in P. sibirica were characterized by genomic and transcriptomic analyses. RESULTS: In the study, 112 PsAP2/ERFs were identified and categorized into 16 subfamilies. Within each subfamily, PsAP2/ERFs exhibited similar exon-intron structures and motif compositions. Additionally, 50 pairs of segmentally duplicated genes were identified within the PsAP2/ERF gene family. Our experimental results showed that 20 PsAP2/ERFs are highly expressed in leaves, roots, and pistils under low-temperature stress conditions. Among them, the expression of PsAP2/ERF21, PsAP2/ERF56 and PsAP2/ERF88 was significantly up-regulated during the treatment period, and it was hypothesised that members of the PsAP2/ERF family play an important role inlow temperature stress tolerance. CONCLUSIONS: This study improves our understanding of the molecular basis of development and low-temperature stress response in P. sibirica and provides a solid scientific foundation for further functional assays and evolutionary analyses of PsAP2/ERFs.


Asunto(s)
Familia de Multigenes , Proteínas de Plantas , Prunus , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/fisiología , Filogenia , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Frío , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque por Frío/genética , Perfilación de la Expresión Génica , Genes de Plantas , Estrés Fisiológico/genética
8.
Foods ; 13(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39200498

RESUMEN

Strawberries are a commonly used agricultural product in the food industry. In the traditional production model, labor costs are high, and extensive picking techniques can result in food safety issues, like poor taste and fruit rot. In response to the existing challenges of low detection accuracy and slow detection speed in the assessment of strawberry fruit maturity in orchards, a CR-YOLOv9 multi-stage method for strawberry fruit maturity detection was introduced. The composite thinning network, CRNet, is utilized for target fusion, employing multi-branch blocks to enhance images by restoring high-frequency details. To address the issue of low computational efficiency in the multi-head self-attention (MHSA) model due to redundant attention heads, the design concept of CGA is introduced. This concept aligns input feature grouping with the number of attention heads, offering the distinct segmentation of complete features for each attention head, thereby reducing computational redundancy. A hybrid operator, ACmix, is proposed to enhance the efficiency of image classification and target detection. Additionally, the Inner-IoU concept, in conjunction with Shape-IoU, is introduced to replace the original loss function, thereby enhancing the accuracy of detecting small targets in complex scenes. The experimental results demonstrate that CR-YOLOv9 achieves a precision rate of 97.52%, a recall rate of 95.34%, and an mAP@50 of 97.95%. These values are notably higher than those of YOLOv9 by 4.2%, 5.07%, and 3.34%. Furthermore, the detection speed of CR-YOLOv9 is 84, making it suitable for the real-time detection of strawberry ripeness in orchards. The results demonstrate that the CR-YOLOv9 algorithm discussed in this study exhibits high detection accuracy and rapid detection speed. This enables more efficient and automated strawberry picking, meeting the public's requirements for food safety.

9.
Front Neurol ; 15: 1378912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119562

RESUMEN

Background: The relationship between hemorrhagic transformation (HT) and uric acid (UA) remains controversial. This study aimed to investigate the relationship between UA concentrations and the risk of HT following acute ischemic stroke (AIS). Methods: Electronic databases were searched for studies on HT and UA from inception to October 31, 2023. Two researchers independently reviewed the studies for inclusion. STATA Software 16.0 was used to compute the standardized mean difference (SMD) and 95% confidence interval (CI) for the pooled and post-outlier outcomes. Heterogeneity was evaluated using the I2 statistic and the Galbraith plot. Additionally, sensitivity analysis was performed. Lastly, Begg's funnel plot and Egger's test were used to assess publication bias. Results: A total of 11 studies involving 4,608 patients were included in the meta-analysis. The pooled SMD forest plot (SMD = -0.313, 95% CI = -0.586--0.039, p = 0.025) displayed that low UA concentrations were linked to a higher risk of HT in post-AIS patients. However, heterogeneity (I2 = 89.8%, p < 0.001) was high among the studies. Six papers fell outside the Galbraith plot regression line, and there exclusive resulted in the absence of heterogeneity (I2 = 52.1%, p = 0.080). Meanwhile, repeated SMD analysis (SMD = -0.517, 95% CI = -0.748--0.285, p = 0.000) demonstrated that the HT group had lower UA concentrations. Finally, Begg's funnel plot and Egger's test indicated the absence of publication bias in our meta-analysis. Conclusion: This meta-analysis illustrated a substantial connection between UA concentrations and HT, with lower UA concentrations independently linked with a higher risk of HT post-AIS. These results lay a theoretical reference for future studies.Systematic review registration:https://www.crd.york.ac.uk/PROSPERO/CRD42023485539.

10.
Nat Commun ; 15(1): 5966, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013862

RESUMEN

Antiferromagnets have attracted significant attention in the field of magnonics, as promising candidates for ultralow-energy carriers for information transfer for future computing. The role of crystalline orientation distribution on magnon transport has received very little attention. In multiferroics such as BiFeO3 the coupling between antiferromagnetic and polar order imposes yet another boundary condition on spin transport. Thus, understanding the fundamentals of spin transport in such systems requires a single domain, a single crystal. We show that through Lanthanum (La) substitution, a single ferroelectric domain can be engineered with a stable, single-variant spin cycloid, controllable by an electric field. The spin transport in such a single domain displays a strong anisotropy, arising from the underlying spin cycloid lattice. Our work shows a pathway to understanding the fundamental origins of magnon transport in such a single domain multiferroic.

11.
Adv Mater ; 36(36): e2404639, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022882

RESUMEN

Spin waves in magnetic materials are promising information carriers for future computing technologies due to their ultra-low energy dissipation and long coherence length. Antiferromagnets are strong candidate materials due, in part, to their stability to external fields and larger group velocities. Multiferroic antiferromagnets, such as BiFeO3 (BFO), have an additional degree of freedom stemming from magnetoelectric coupling, allowing for control of the magnetic structure, and thus spin waves, with the electric field. Unfortunately, spin-wave propagation in BFO is not well understood due to the complexity of the magnetic structure. In this work, long-range spin transport is explored within an epitaxially engineered, electrically tunable, 1D magnonic crystal. A striking anisotropy is discovered in the spin transport parallel and perpendicular to the 1D crystal axis. Multiscale theory and simulation suggest that this preferential magnon conduction emerges from a combination of a population imbalance in its dispersion, as well as anisotropic structural scattering. This work provides a pathway to electrically reconfigurable magnonic crystals in antiferromagnets.

12.
Plant Signal Behav ; 19(1): 2371694, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38916149

RESUMEN

MYB transcription factor is one of the largest families in plants. There are more and more studies on plants responding to abiotic stress through MYB transcription factors, but the mechanism of some family members responding to salt stress is unclear. In this study, physiological and transcriptome techniques were used to analyze the effects of the R2R3-MYB transcription factor AtMYB72 on the growth and development, physiological function, and key gene response of Arabidopsis thaliana. Phenotypic observation showed that the damage of overexpression strain was more serious than that of Col-0 after salt treatment, while the mutant strain showed less salt injury symptoms. Under salt stress, the decrease of chlorophyll content, the degree of photoinhibition of photosystem II (PSII) and photosystem I (PSI) and the degree of oxidative damage of overexpressed lines were significantly higher than those of Col-0. Transcriptome data showed that the number of differentially expressed genes (DEGs) induced by salt stress in overexpressed lines was significantly higher than that in Col-0. GO enrichment analysis showed that the response of AtMYB72 to salt stress was mainly by affecting gene expression in cell wall ectoplast, photosystem I and photosystem II, and other biological processes related to photosynthesis. Compared with Col-0, the overexpression of AtMYB72 under salt stress further inhibited the synthesis of chlorophyll a (Chla) and down-regulated most of the genes related to photosynthesis, which made the photosynthetic system more sensitive to salt stress. AtMYB72 also caused the outbreak of reactive oxygen species and the accumulation of malondialdehyde under salt stress, which decreased the activity and gene expression of key enzymes in SOD, POD, and AsA-GSH cycle, thus destroying the ability of antioxidant system to maintain redox balance. AtMYB72 negatively regulates the accumulation of osmotic regulatory substances such as soluble sugar (SS) and soluble protein (SP) in A. thaliana leaves under salt stress, which enhances the sensitivity of Arabidopsis leaves to salt. To sum up, MYB72 negatively regulates the salt tolerance of A. thaliana by destroying the light energy capture, electron transport, and antioxidant capacity of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Estrés Salino , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Estrés Oxidativo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
13.
Expert Opin Drug Saf ; : 1-11, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38898801

RESUMEN

BACKGROUND: Lasmiditan offers a promising option for the treatment of migraines, particularly for individuals with cardiovascular concerns. It is crucial to gather comprehensive safety information of lasmiditan through large-scale post market monitoring. RESEARCH DESIGN AND METHODS: This study assessed the safety profile of lasmiditan based on real-world data of FDA Adverse Event Reporting System (FAERS) database. Four disproportionality analysis methods were applied to mining the significant signals. The differences in adverse event signals among different subgroups were investigated concerning race, sex, age, weight, dose, and concomitant drug. RESULTS: A total of 820 reports and 1,661 adverse events with lasmiditan as the primary suspected drug were identified. Two new adverse event signals related to nervous system disorders emerged. Females and males were more likely to develop paresthesia and dizziness, respectively. Most common adverse events were more likely to occur in the elderly patients and at high doses. CONCLUSIONS: It is essential to be vigilant about the relation of potential nervous system disorders with lasmiditan. The importance of heightened clinical vigilance regarding paresthesia in females and dizziness in males was underscored. Additionally, it is advised to administer a lower initial dose for elderly patients.

14.
Proc Natl Acad Sci U S A ; 121(26): e2318570121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905238

RESUMEN

Hydrogen isotope ratios (δ2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light, and CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (αalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the αalkenone with increasing CO2(aq) and confirm αalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2H-richer intracellular water, increasing αalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of αalkenone to CO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of αalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, αalkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.


Asunto(s)
Dióxido de Carbono , Haptophyta , Lípidos , Fotosíntesis , Dióxido de Carbono/metabolismo , Haptophyta/metabolismo , Lípidos/química , Hidrógeno/metabolismo , Cloroplastos/metabolismo , Deuterio/metabolismo , NADP/metabolismo , Temperatura , Fraccionamiento Químico/métodos , Metabolismo de los Lípidos
15.
Nat Mater ; 23(7): 944-950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783106

RESUMEN

Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems.

16.
Nat Commun ; 15(1): 3869, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719933

RESUMEN

Solving ill-posed inverse problems typically requires regularization based on prior knowledge. To date, only prior knowledge that is formulated mathematically (e.g., sparsity of the unknown) or implicitly learned from quantitative data can be used for regularization. Thereby, semantically formulated prior knowledge derived from human reasoning and recognition is excluded. Here, we introduce and demonstrate the concept of semantic regularization based on a pre-trained large language model to overcome this vexing limitation. We study the approach, first, numerically in a prototypical 2D inverse scattering problem, and, second, experimentally in 3D and 4D compressive microwave imaging problems based on programmable metasurfaces. We highlight that semantic regularization enables new forms of highly-sought privacy protection for applications like smart homes, touchless human-machine interaction and security screening: selected subjects in the scene can be concealed, or their actions and postures can be altered in the reconstruction by manipulating the semantic prior with suitable language-based control commands.

17.
Signal Transduct Target Ther ; 9(1): 130, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816371

RESUMEN

The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.


Asunto(s)
Enfermedades Cardiovasculares , Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Fibrosis/genética , Inflamación/genética , Inflamación/patología , Inflamación/inmunología , Animales
18.
Animals (Basel) ; 14(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791715

RESUMEN

The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.

19.
Sci Total Environ ; 938: 173385, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796010

RESUMEN

Internalization of chemicals and the forage risks of ryegrass under the combined exposure to PAHs and Cd at environmental concentrations were studied here. The effect of soil pH was also concerned due to the widely occurred soil acidification and general alkali remediation for acidification soil. Unexpectedly, as same as the acid-treated group (pH 6.77), the alkali-treatment (pH 8.83) increased Cd uptake compared with original soil pH group (pH 7.92) for the reason of CdOH+ and CdHCO3+ formed in alkali-treated group. Co-exposure to PAHs induced more oxidative stress than Cd exposure alone due to PAHs aggregated in young root regions, such as root tips, and consequently, affecting the expression of Cd-transporters, destroying the basic structure of plant cells, inhibiting the energy supply for the transporters, even triggering programmed cell death, and finally resulting in decreased Cd uptake. Even under environmental concentrations, combined exposure caused potential risks derived from both PAHs and Cd. Especially, ryegrass grown in alkali-treated soil experienced an increased forage risks despite the soil meeting the national standards for Cd at safe levels. These comprehensive results reveal the mechanism of PAHs inhibiting Cd uptake, improve the understanding of bioavailability of Cd based on different forms, provide a theoretical basis to formulate the safety criteria, and guide the application of actual soil management.


Asunto(s)
Cadmio , Lolium , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Lolium/efectos de los fármacos , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Suelo/química , Medición de Riesgo
20.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714653

RESUMEN

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...