Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.880
Filtrar
1.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746361

RESUMEN

RATIONALE: Asthma is a chronic inflammatory disease of the airways that involves crosstalk between myeloid-derived regulatory cells (MDRCs) and CD4+ T cells. Although small extracellular vesicles (sEVs) are known to mediate cell-cell communication, the role of sEV signaling via mitochondria in perpetuating asthmatic airway inflammation is unknown. OBJECTIVES: We investigated the effects of MDRC-derived exosomes on dysregulated T cell responses in asthmatics. METHODS: Small extracellular vesicles isolated from bronchoalveolar lavage fluid or airway MDRCs of mild to moderate asthmatics or healthy controls were co-cultured with autologous peripheral and airway CD4+ T lymphocytes. sEV internalization, sEV-mediated transfer of mitochondria targeted GFP to T cells, sEV mitochondrial signaling, and subsequent activation, proliferation and polarization of CD4+ T lymphocytes to Th1, Th2 and Th17 subsets were assessed. MEASUREMENTS AND MAIN RESULTS: Airway MDRC-derived sEVs from asthmatics mediated T cell receptor engagement and transfer of mitochondria that induced antigen-specific activation and polarization into Th17 and Th2 cells, drivers of chronic airway inflammation in asthma. CD4+ T cells internalized sEVs containing mitochondria predominantly by membrane fusion, and blocking mitochondrial oxidant signaling in MDRC-derived exosomes mitigated T cell activation. Reactive oxygen species-mediated signaling that elicited T cell activation in asthmatics was sEV-dependent. A Drp1-dependent mitochondrial fission in pro-inflammatory MDRCs promoted mitochondrial packaging within sEVs, which then co-localized with the polarized actin cytoskeleton and mitochondrial networks in the organized immune synapse of recipient T cells. CONCLUSIONS: Our studies indicate a previously unrecognized role for mitochondrial fission and exosomal mitochondrial transfer in dysregulated T cell activation and Th cell differentiation in asthma which could constitute a novel therapeutic target.

2.
Acta Biomater ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692469

RESUMEN

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.

3.
Eur J Pharm Sci ; : 106805, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763450

RESUMEN

Drug resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a primary factor affecting their therapeutic efficacy in human non-small cell lung cancer (NSCLC). NSCLC cells can undergo epithelial-mesenchymal transition (EMT) induced by many factors in the tumour microenvironment (TME), which plays a crucial role in tumour drug resistance. In this study, a multicellular lung-on-a-chip that can realise the cell co-culture of the human non-small cell lung cancer cell line HCC827, human foetal lung fibroblasts (HFL-1), and human umbilical vein endothelial cells (HUVECs) is prepared. The TME was simulated on the chip combined with perfusion and other factors, and the drug evaluation of osimertinib was performed to explore the drug resistance mechanism of EGFR-TKIs. In the early stages, a two-dimensional static cell co-culture was achieved by microchip, and the results showed that HFL-1 cells could be transformed into cancer-associated fibroblasts (CAFs), and HCC827 cells could undergo EMT, both of which were mediated by Interleukin-6 (IL-6). Vimentin (VIM) and Alpha Skeletal Muscle Actin (a-SMA) expression of HFL-1 was upregulated, whereas E-cadherin (E-cad) expression of HCC827 was down-regulated. Further, N-cadherin (N-cad) expression of HCC827 was upregulated. In both the static cell co-culture and multicellular lung-on-a-chip, HCC827 cells with CAFs co-culture or IL-6 treatment developed resistance to osimertinib. Further use of the IL-6 antibody inhibitor tocilizumab could reverse EGFR-TKI resistance to a certain extent. Combination therapy with tocilizumab and EGFR-TKIs may provide a novel therapeutic strategy for overcoming EGFR-TKI resistance caused by EMT in NSCLC. Furthermore, the lung-on-a-chip can simulate complex TME and can be used for evaluating tumour resistance and exploring mechanisms, with the potential to become an important tool for personalised diagnosis, treatment, and biomedical research.

4.
Small ; : e2309712, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767499

RESUMEN

Bromine-based flow batteries (BFB) have always suffered from poor kinetics due to the sluggish Br3 -/Br- redox, hindering their practical applications. Developing cathode materials with high catalytic activity is critical to address this challenge. Herein, the in-depth investigation for the free energy of the bromine redox electrode is conducted initially through DFT calculations, establishing the posterior desorption during oxidation as the rate-determining step. An urchin-like titanium nitride hollow sphere (TNHS) composite is designed and synthesized as the catalyst for bromine redox. The large difference in Br- and Br3 - adsorption capability of TNHS promotes rapid desorption of generated Br3 - during the oxidation process, liberating active sites timely to enable smooth ongoing reactions. Besides, the urchin-like microporous/mesoporous structure of TNHS provides abundant active surface for bromine redox reactions, and ample cavities for the bromine accommodation. The inherently high conductivity of TNHS enables facile electron transfer through multiple channels. Consequently, zinc-bromide flow batteries with TNHS catalyst exhibit significantly enhanced kinetics, stably operating at 80 mA cm-2 with 82.78% energy efficiency. Overall, this study offers a solving strategy and catalyst design approach to the sluggish kinetics that has plagued bromine-based flow batteries.

5.
Theranostics ; 14(7): 2897-2914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773985

RESUMEN

Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.


Asunto(s)
Interleucinas , Ratones Transgénicos , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Ratones , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Modelos Animales de Enfermedad , Plasticidad de la Célula , Ratones Endogámicos C57BL , Activación de Linfocitos , Ovalbúmina/inmunología , Proliferación Celular , Diferenciación Celular , Femenino
6.
BMC Pulm Med ; 24(1): 241, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750432

RESUMEN

BACKGROUND: Pleural fluid is one of the common complications of thoracic diseases, and tuberculous pleural effusion (TPE) is the most common cause of pleural effusion in TB-endemic areas and the most common type of exudative pleural effusion in China. In clinical practice, distinguishing TPE from pleural effusion caused by other reasons remains a relatively challenging issue. The objective of present study was to explore the clinical significance of the pleural fluid lactate dehydrogenase/adenosine deaminase ratio (pfLDH/pfADA) in the diagnosis of TPE. METHODS: The clinical data of 618 patients with pleural effusion were retrospectively collected, and the patients were divided into 3 groups: the TPE group (412 patients), the parapneumonic pleural effusion (PPE) group (106 patients), and the malignant pleural effusion (MPE) group (100 patients). The differences in the ratios of pleural effusion-related and serology-related indicators were compared among the three groups, and receiver operating characteristic curves were drawn to analyze the sensitivity and specificity of the parameter ratios of different indicators for the diagnosis of TPE. RESULTS: The median serum ADA level was higher in the TPE group (13 U/L) than in the PPE group (10 U/L, P < 0.01) and MPE group (10 U/L, P < 0.001). The median pfADA level in the TPE group was 41 (32, 52) U/L; it was lowest in the MPE group at 9 (7, 12) U/L and highest in the PPE group at 43 (23, 145) U/L. The pfLDH level in the PPE group was 2542 (1109, 6219) U/L, which was significantly higher than that in the TPE group 449 (293, 664) U/L. In the differential diagnosis between TPE and non-TPE, the AUC of pfLDH/pfADA for diagnosing TPE was the highest at 0.946 (0.925, 0.966), with an optimal cutoff value of 23.20, sensitivity of 93.9%, specificity of 87.0%, and Youden index of 0.809. In the differential diagnosis of TPE and PPE, the AUC of pfLDH/pfADA was the highest at 0.964 (0.939, 0.989), with an optimal cutoff value of 24.32, sensitivity of 94.6%, and specificity of 94.4%; this indicated significantly better diagnostic efficacy than that of the single index of pfLDH. In the differential diagnosis between TPE and MPE, the AUC of pfLDH/pfADA was 0.926 (0.896, 0.956), with a sensitivity of 93.4% and specificity of 80.0%; this was not significantly different from the diagnostic efficacy of pfADA. CONCLUSIONS: Compared with single biomarkers, pfLDH/pfADA has higher diagnostic value for TPE and can identify patients with TPE early, easily, and economically.


Asunto(s)
Adenosina Desaminasa , L-Lactato Deshidrogenasa , Derrame Pleural , Curva ROC , Sensibilidad y Especificidad , Tuberculosis Pleural , Humanos , Adenosina Desaminasa/análisis , Adenosina Desaminasa/sangre , Adenosina Desaminasa/metabolismo , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Derrame Pleural/diagnóstico , L-Lactato Deshidrogenasa/análisis , Tuberculosis Pleural/diagnóstico , Adulto , Anciano , China , Diagnóstico Diferencial , Derrame Pleural Maligno/diagnóstico , Biomarcadores/análisis , Biomarcadores/sangre , Relevancia Clínica
7.
J Nucl Med ; 65(Suppl 1): 12S-18S, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719240

RESUMEN

Nectin cell adhesion molecule 4 (nectin-4) is a transmembrane protein overexpressed on a variety of cancers and plays an important role in oncogenic and metastatic processes. The nectin-4-targeted antibody-drug conjugate enfortumab vedotin has been approved for treating locally advanced or metastatic urothelial cancer, but the efficacy in other types of cancer remains to be explored. The aim of this study was to evaluate the feasibility of nectin-4-targeted PET imaging with 68Ga-N188 as a noninvasive method to quantify membranous nectin-4 expression in multiple tumor types-an approach that may provide insight for patient stratification and treatment selection. Methods: Sixty-two patients with 16 types of cancer underwent head-to-head 68Ga-N188 and 18F-FDG PET/CT imaging for initial staging or detection of recurrence and metastases. Correlation between lesion SUVmax and nectin-4 expression determined by immunohistochemistry staining was analyzed in 36 of 62 patients. Results: The SUVmax of 68Ga-N188 had a positive correlation with membranous nectin-4 expression in the various tumor types tested (r = 0.458; P = 0.005), whereas no association was observed between the SUVmax and cytoplasmic nectin-4 expression. The detection rates for patient-based analysis of 68Ga-N188 and 18F-FDG PET/CT examinations were comparable (95.00% [57/60] vs. 93.33% [56/60]). In patients with pancreatic cancer, 68Ga-N188 exhibited a potential advantage for detecting residual or locally recurrent tumors; this advantage may assist in clinical decision-making. Conclusion: The correlation between nectin-4-targeted 68Ga-N188 PET imaging and membranous nectin-4 expression indicates the potential of 68Ga-N188 as an effective tool for selecting patients who may benefit from enfortumab vedotin treatment. The PET imaging results provided evidence to explore nectin-4-targeted therapy in a variety of tumors. 68Ga-N188 may improve the restaging of pancreatic cancer but requires further evaluation in a powered, prospective setting.


Asunto(s)
Moléculas de Adhesión Celular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Moléculas de Adhesión Celular/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Adulto , Anticuerpos Monoclonales/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años , Investigación Biomédica Traslacional , Nectinas
8.
Clin Nucl Med ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689438

RESUMEN

ABSTRACT: Dedifferentiated liposarcoma is an extremely rare and highly malignant tumor. We demonstrated a case of a 75-year-old man with significantly PSMA-avid and mildly FDG uptake-dedifferentiated liposarcoma in the retroperitoneal area. The double-tracer (PSMA and FDG) PET scans could further contribute to differential diagnosis and the following treatment strategy for patients who were suspected with prostate cancer metastases and other malignant tumors simultaneously.

9.
ACS Omega ; 9(12): 14033-14042, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559973

RESUMEN

The spontaneous combustion of residual coal in abandoned mining areas severely affects the safe and efficient extraction of coal, employee occupational health, and regional environmental ecology. A technical measure for preventing and controlling the spontaneous combustion of residual coal involves injecting antispontaneous combustion materials into abandoned areas. In this study, the composition, preparation, and mechanism of action of silica gel foam, a material used to suppress spontaneous combustion during coal mining, were investigated to improve the performance of materials designed to prevent spontaneous combustion in abandoned areas. The inhibitory efficiency improved, and the mechanical strength and stability of the foam liquid film increased upon adding modified antioxidants and nanosilica particles to the gel foam. Macro performance tests, microstructural characterization, and chemical inhibition mechanism analyses verified the efficacy of silica gel foam for suppressing spontaneous combustion. The air leakage resistance of the silica gel foam effectively increased the air leakage resistance of the coal samples at different pressures. New radicals formed during the spontaneous combustion of coal comprising different inhibitors, as indicated by the g-factor results of electron paramagnetic resonance (EPR) spectroscopy analysis; the formation of radicals initially decreased and then increased when the inhibitor material changed. The concentration of free radicals decreased markedly during the spontaneous combustion process of both raw and inhibited coal samples at low oxidation temperatures (∼60-100 °C), indicating a marked inhibitory effect.

10.
Dev Cell ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38574731

RESUMEN

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3ß inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.

11.
Chin J Traumatol ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631945

RESUMEN

PURPOSE: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners. METHODS: Based on the Total Human Model for Safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities was conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized. RESULTS: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established. CONCLUSION: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.

12.
Nat Commun ; 15(1): 3152, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605064

RESUMEN

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fluorodesoxiglucosa F18 , Radiofármacos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Estudios Retrospectivos
13.
Mol Biol Evol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652808

RESUMEN

In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.

14.
PLoS One ; 19(4): e0293957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630785

RESUMEN

This research aimed to investigate the mediating function of Green Employee Empowerment (GEE) in the relationship between Green Human Resource Management practices (GHRM) and the environmental performance of small and medium-sized enterprises (SMEs) in Ghana, drawing on the Ability-Motivation-Opportunity (AMO) theory. This study assessed the hypotheses in the established research model using structural equation modeling based on data collected from 320 participants from small and medium-sized firms in Ghana. The study's results revealed that GHRM practices were significantly correlated with the firm's environmental performance. The study found significant GHRM's indirect consequences on environmental performance through GEE in all models examined. These findings suggest that GEE plays a crucial role in translating the impact of GHRM practices into improved environmental performance. The study overlooked other potential mediators or moderators in the relationship between GHRM practices and environmental performance, focusing on GEE. To better understand the complex dynamics behind GHRM techniques' environmental performance, future research might examine business culture, leadership style, and employee sustainability attitudes.


Asunto(s)
Comercio , Análisis de Mediación , Humanos , Ghana , Análisis de Clases Latentes , Recursos Humanos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38664244

RESUMEN

Acute lung injury (ALI) is a common disease with complex pathogenesis. However, the treatment is mainly symptomatic with limited clinical options. Asiaticoside (AS), a Chinese herbal extract, has protective effects against LPS-induced ALI in mice and inhibits nitric oxide and prostaglandin E2 synthesis; however, the specific mechanism of AS in the prevention and treatment of LPS-induced ALI needs further study. Sema4D/CD72 pathway, mitochondrial dysfunction, and miRNA-21 are closely associated with inflammation. Therefore, the present study aimed to explore whether AS exerts its therapeutic effect on ALI by influencing Sema4D/CD72 pathway and mitochondrial dysfunction, restoring the balance of inflammatory factors, and influencing miRNA-21 expression. Cell and animal experiments were performed to investigate the effect of AS on ALI. Lipopolysaccharide (LPS) was used to establish the ALI model. CCK8 and flow cytometry were used to detect the cell viability and apoptosis rate. HE staining and wet-to-dry weight ratio (W/D) of lung tissue were determined. The expressions of Sema4D, CD72, NF-κB p65, Bax, Bcl2, and caspase 3 in RAW264.7 cells and lung tissues were detected by western blot, and the levels of IL-10 and IL-1ß induced by LPS in supernatant of RAW264.7 cells and BALF were measured by ELISA. And the expression of miRNA-21 in cells and lung tissues was detected by fluorescence quantitative PCR. The result shows that AS treatment suppressed LPS-induced cell damage and lung injury in mice. AS treatment could alleviate the pathological changes such as inflammatory infiltration and histopathological changes in the lungs caused by LPS, and reduce the ratio of W/D. AS significantly alleviated the decrease of mitochondrial membrane potential induced by LPS, inhibited the increase of ROS production, and reduced the expression of mitochondrial fission proteins Drp1 and Fis1. The high-dose AS group significantly downregulated the expression of Sema4D, CD72, phosphorylated NF-κB p65, and apoptosis-related proteins, decreased the pro-inflammatory factor IL-1ß, and enhanced the level of anti-inflammatory factor IL-10. In addition, AS promoted miRNA-21 expression. These effects inhibited apoptosis and restored the balance between anti- and pro-inflammatory factors. This represents the inaugural report elucidating the mechanism by which AS inhibits the Sema4D/CD72 signaling pathway. These findings offer novel insights into the potential application of AS in both preventing and treating ALI.

16.
Biomed Eng Lett ; 14(3): 559-569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645596

RESUMEN

Accurate prediction of human locomotion intent benefits the seamless switching of lower limb exoskeleton controllers in different terrains to assist humans in walking safely. In this paper, a deep belief network (DBN) was developed to construct a multimodal framework for recognizing various locomotion modes and predicting transition tasks. Three fusion strategies (data level, feature level, and decision level) were explored, and optimal network performance was obtained. This method could be tested on public datasets. For the continuous performance of steady state, the best prediction accuracy achieved was 97.64% in user-dependent testing and 96.80% in user-independent testing. During the transition state, the system accurately predicted all transitions (user-dependent: 96.37%, user-independent: 95.01%). The multimodal framework based on DBN can accurately predict the human locomotion intent. The experimental results demonstrate the potential of the proposed model in the volition control of the lower limb exoskeleton.

17.
Ital J Pediatr ; 50(1): 84, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650007

RESUMEN

BACKGROUND: The COVID-19 pandemic have impacts on the prevalence of other pathogens and people's social lifestyle. This study aimed to compare the pathogen, allergen and micronutrient characteristics of pediatric inpatients with pneumonia prior to and during the COVID-19 pandemic in a large tertiary hospital in Shanghai, China. METHODS: Patients with pneumonia admitted to the Department of Pediatric Pulmonology of Xinhua Hospital between March-August 2019 and March-August 2020 were recruited. And clinical characteristics of the patients in 2019 were compared with those in 2020. RESULTS: Hospitalizations for pneumonia decreased by 74% after the COVID-19 pandemic. For pathogens, virus, mycoplasma pneumoniae (MP) and mixed infection rates were all much lower in 2020 than those in 2019 (P < 0.01). Regarding allergens, compared with 2019, the positive rates of house dust mite, shrimp and crab were significantly higher in 2020 (P < 0.01). And for micronutrients, the levels of vitamin B2, B6, C and 25-hydroxyvitamin D (25(OH)D) in 2020 were observed to be significantly lower than those in 2019 (P < 0.05). For all the study participants, longer hospital stay (OR = 1.521, P = 0.000), milk allergy (OR = 6.552, P = 0.033) and calcium (Ca) insufficiency (OR = 12.048, P = 0.019) were identified as high-risk factors for severe pneumonia by multivariate analysis. CONCLUSIONS: The number of children hospitalized with pneumonia and incidence of common pathogen infections were both reduced, and that allergy and micronutrient status in children were also changed after the outbreak of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Niño , China/epidemiología , Preescolar , Hospitalización/estadística & datos numéricos , Lactante , SARS-CoV-2 , Neumonía/epidemiología , Adolescente
18.
Plants (Basel) ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38592812

RESUMEN

The seed, a critical organ in higher plants, serves as a primary determinant of agricultural productivity, with its quality directly influencing crop yield. Improper storage conditions can diminish seed vigor, adversely affecting seed germination and seedling establishment. Therefore, understanding the seed-aging process and exploring strategies to enhance seed-aging resistance are paramount. In this study, we observed that seed aging during storage leads to a decline in seed vigor and can coincide with the accumulation of hydrogen peroxide (H2O2) in the radicle, resulting in compromised or uneven germination and asynchronous seedling emergence. We identified the abscisic acid (ABA) catabolism gene, abscisic acid 8'-hydroxylase 2 (OsABA8ox2), as significantly induced by aging treatment. Interestingly, transgenic seeds overexpressing OsABA8ox2 exhibited reduced seed vigor, while gene knockout enhanced seed vigor, suggesting its role as a negative regulator. Similarly, seeds pretreated with ABA or diphenyleneiodonium chloride (DPI, an H2O2 inhibitor) showed increased resistance to aging, with more robust early seedling establishment. Both OsABA8ox2 mutant seeds and seeds pretreated with ABA or DPI displayed lower H2O2 content during aging treatment. Overall, our findings indicate that ABA mitigates rice seed aging by reducing H2O2 accumulation in the radicle. This study offers valuable germplasm resources and presents a novel approach to enhancing seed resistance against aging.

19.
Analyst ; 149(9): 2498-2506, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38629127

RESUMEN

Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , Nanopartículas/química
20.
Materials (Basel) ; 17(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673172

RESUMEN

Resin mineral composite (RMC) is a new material with several times the damping properties of gray cast iron and great corrosion resistance. Due to its overall brittleness, sawing with a diamond band saw would be a suitable method. In this research, sawing experiments are carried out to study the sawing force characteristics of the material and its surface morphology during the processing. The results show that the feed force level is in the range of 3.5~5.5 N and the tangential force level is relatively low. The distribution of resin mineral components does not have a significant impact on the average sawing force but increases the fluctuation of the lateral force signal. The maximum fluctuation volume is 94.86% higher than other areas. Uneven lateral force, generated when diamond particles pass through the resin-mineral interface, is one of the causes of fluctuations. The machined surface of RMC has uniform strip scratches and a small number of pits. Maintaining a constant ratio of sawing speed to feed speed can result in approximately the same machined surface. A step structure with a height of about 10 µm appears at the interface of resin minerals. As a processing defect, it may affect the performance of RMC components in some aspects, which need a further precision machining processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA