Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Eur Respir J ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39401861

RESUMEN

BACKGROUND: Fibrosis is often associated with aberrant repair mechanisms that ultimately lead to organ failure. In the lung, idiopathic pulmonary fibrosis (IPF) is a fatal form of interstitial lung disease (ILD) to which there is currently no curative therapy. From the cell biology point of view, the cell of origin and eventual fate of activated myofibroblasts (aMYFs) have taken center stage as these cells are believed to drive structural remodeling and lung function impairment. While aMYFs are now widely believed to originate from resident fibroblasts, the heterogeneity of aMYFs and ultimate fate during fibrosis resolution remain elusive. We have previously shown that aMYFs dedifferentiation and acquisition of a lipofibroblast (LIF)-like phenotype represent a route of fibrosis resolution. METHODS: In this study, we combined genetic lineage tracing and single-cell transcriptomics in mice, and data mining of human IPF datasets to decipher the heterogeneity of aMYFs and investigate differentiation trajectories during fibrosis resolution. Furthermore, organoid cultures were utilized as a functional readout for the alveolar mesenchymal niche activity during various phases of injury and repair in mice. RESULTS: Our data demonstrate that aMYFs consist of four subclusters displaying unique pro-alveologenic versus profibrotic profiles. Alveolar fibroblasts displaying a high LIF-like signature largely constitute both the origin and fate of aMYFs during fibrogenesis and resolution respectively. The heterogeneity of aMYFs is conserved in humans and a significant proportion of human aMYFs displays a high LIF signature. CONCLUSION: Our work identifies a subcluster of aMYFs that is potentially relevant for future management of IPF.

2.
Sci Total Environ ; 953: 175922, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39218088

RESUMEN

Exposure to fine particulate matter (PM) disrupts the function of airway epithelial barriers causing cellular stress and damage. However, the precise mechanisms underlying PM-induced cellular injury and the associated molecular pathways remain incompletely understood. In this study, we used intratracheal instillation of PM in C57BL6 mice and PM treatment of the BEAS-2B cell line as in vivo and in vitro models, respectively, to simulate PM-induced cellular damage and inflammation. We collected lung tissues and bronchoalveolar lavage fluids to assess histopathological changes, necroptosis, and airway inflammation. Our findings reveal that PM exposure induces necroptosis in mouse airway epithelial cells. Importantly, concurrent administration of a receptor interacting protein kinases 3 (RIPK3) inhibitor or the deletion of the necroptosis effector mixed-lineage kinase domain-like protein (MLKL) effectively attenuated PM-induced airway inflammation. PM exposure dose-dependently induces the expression of Parkin, an E3 ligase we recently reported to play a pivotal role in necroptosis through regulating necrosome formation. Significantly, deletion of endogenous Parkin exacerbates inflammation by enhancing epithelial necroptosis. These results indicate that PM-induced Parkin expression plays a crucial role in suppressing epithelial necroptosis, thereby reducing airway inflammation. Overall, these findings offer valuable mechanistic insights into PM-induced airway injury and identify a potential target for clinical intervention.


Asunto(s)
Ratones Endogámicos C57BL , Necroptosis , Material Particulado , Ubiquitina-Proteína Ligasas , Necroptosis/efectos de los fármacos , Animales , Material Particulado/toxicidad , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Contaminantes Atmosféricos/toxicidad , Células Epiteliales/efectos de los fármacos , Inflamación , Línea Celular
3.
Gene ; 930: 148841, 2024 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-39134101

RESUMEN

Ovarian cancer (OC) ranks among the prevalent tumors affecting the female reproductive system. The aim of this study was to evaluate mitochondria-associated platinum resistance genes using organoid models. Univariate Cox regression, LASSO and multivariate Cox regression analyses were performed on The Cancer Genome Atlas (TCGA) database to construct 2-gene prognostic signature (MUL1 and SSBP1), and GSE26712 dataset was used for external validation. In addition, the relationship between MUL1 and platinum resistance was examined by organoid culture, lentiviral transduction, CCK8 assay, and Western blot. The results showed that patients in the high-risk group exhibited significantly worse OS (P = 0.002, P = 0.017). Drug sensitivity analysis revealed that platinum resistance increased with the upregulation of MUL1 expression (Cor = 0.5154, P = 0.02). Our experimental findings demonstrated that knockout of the MUL1 gene significantly increased apoptosis and enhanced the sensitivity of the OC cell line A2780 to cisplatin. Through this study, we have provided strong evidence for further research on prognostic risk factors and individualized treatment in OC patients, and provided new insights into addressing platinum resistance in OC.


Asunto(s)
Biomarcadores de Tumor , Cisplatino , Resistencia a Antineoplásicos , Mitocondrias , Neoplasias Ováricas , Femenino , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Pronóstico
4.
Theranostics ; 14(9): 3603-3622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948058

RESUMEN

Background: Myofibroblasts (MYFs) are generally considered the principal culprits in excessive extracellular matrix deposition and scar formation in the pathogenesis of lung fibrosis. Lipofibroblasts (LIFs), on the other hand, are defined by their lipid-storing capacity and are predominantly found in the alveolar regions of the lung. They have been proposed to play a protective role in lung fibrosis. We previously reported that a LIF to MYF reversible differentiation switch occurred during fibrosis formation and resolution. In this study, we tested whether WI-38 cells, a human embryonic lung fibroblast cell line, could be used to study fibroblast differentiation towards the LIF or MYF phenotype and whether this could be relevant for idiopathic pulmonary fibrosis (IPF). Methods: Using WI-38 cells, Fibroblast (FIB) to MYF differentiation was triggered using TGF-ß1 treatment and FIB to LIF differentiation using Metformin treatment. We also analyzed the MYF to LIF and LIF to MYF differentiation by pre-treating the WI-38 cells with TGF-ß1 or Metformin respectively. We used IF, qPCR and bulk RNA-Seq to analyze the phenotypic and transcriptomic changes in the cells. We correlated our in vitro transcriptome data from WI-38 cells (obtained via bulk RNA sequencing) with the transcriptomic signature of LIFs and MYFs derived from the IPF cell atlas as well as with our own single-cell transcriptomic data from IPF patients-derived lung fibroblasts (LF-IPF) cultured in vitro. We also carried out alveolosphere assays to evaluate the ability of the proposed LIF and MYF cells to support the growth of alveolar epithelial type 2 cells. Results: WI-38 cells and LF-IPF display similar phenotypical and gene expression responses to TGF-ß1 and Metformin treatment. Bulk RNA-Seq analysis of WI-38 cells and LF-IPF treated with TGF-ß1, or Metformin indicate similar transcriptomic changes. We also show the partial conservation of the LIF and MYF signature extracted from the Habermann et al. scRNA-seq dataset in WI-38 cells treated with Metformin or TGF-ß1, respectively. Alveolosphere assays indicate that LIFs enhance organoid growth, while MYFs inhibit organoid growth. Finally, we provide evidence supporting the MYF to LIF and LIF to MYF reversible switch using WI-38 cells. Conclusions: WI-38 cells represent a versatile and reliable model to study the intricate dynamics of fibroblast differentiation towards the MYF or LIF phenotype associated with lung fibrosis formation and resolution, providing valuable insights to drive future research.


Asunto(s)
Diferenciación Celular , Fibroblastos , Fibrosis Pulmonar Idiopática , Miofibroblastos , Factor de Crecimiento Transformador beta1 , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Línea Celular , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pulmón/patología , Pulmón/citología , Transcriptoma , Metformina/farmacología , Plasticidad de la Célula/efectos de los fármacos , Fenotipo
5.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratones Transgénicos , Masculino , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología
6.
Ecotoxicol Environ Saf ; 272: 116094, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364759

RESUMEN

Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.


Asunto(s)
Benzo(a)pireno , Lesión Pulmonar , Proteína Fluorescente Roja , Ratones , Animales , Benzo(a)pireno/toxicidad , Proteínas Quinasas/metabolismo , Necroptosis , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/prevención & control , Fibrosis
7.
Int Immunopharmacol ; 130: 111741, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38394887

RESUMEN

BACKGROUND: Acute lung injury (ALI) is an inflammatory condition characterized by acute damage to lung tissue. SPAUTIN-1, recognized as a small molecule drug targeting autophagy and USP10/13, has been reported for its potential to inhibit oxidative stress damage in various tissue injuries. However, the role and mechanism of SPAUTIN-1 in ALI remain unclear. This study aims to elucidate the protective effects of SPAUTIN-1 on ALI, with a particular focus on its role and mechanism in pulmonary inflammatory responses. METHODS: Lipopolysaccharides (LPS) were employed to induce inflammation-mediated ALI. Bleomycin was used to induce non-inflammation-mediated ALI. The mechanism of SPAUTIN-1 action was identified through RNA-Sequencing and subsequently validated in mouse primary cells. Tert-butyl hydroperoxide (TBHP) was utilized to create an in vitro model of lung epithelial cell oxidative stress with MLE-12 cells. RESULTS: SPAUTIN-1 significantly mitigated LPS-induced lung injury and inflammatory responses, attenuated necroptosis and apoptosis in lung epithelial cells, and inhibited autophagy in leukocytes and epithelial cells. However, SPAUTIN-1 exhibited no significant effect on bleomycin-induced lung injury. RNA-sequencing results demonstrated that SPAUTIN-1 significantly inhibited the NF-κB signaling pathway in leukocytes, a finding consistently confirmed by mouse primary cell assays. In vitro experiments further revealed that SPAUTIN-1 effectively mitigated oxidative stress injury in MLE-12 cells induced by TBHP. CONCLUSION: SPAUTIN-1 alleviated LPS-induced inflammatory injury by inhibiting the NF-κB pathway in leukocytes and protected epithelial cells from oxidative damage, positioning it as a potential therapeutic candidate for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Bencilaminas , FN-kappa B , Quinazolinas , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Neutrófilos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón , Inflamación/metabolismo , Bleomicina/efectos adversos , ARN/metabolismo
8.
Am J Pathol ; 194(5): 656-672, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325552

RESUMEN

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Miofibroblastos/metabolismo , Lesión Pulmonar/patología , Proteómica , Pulmón/patología , Fibrosis , Hipoxia/patología , Fibrosis Pulmonar Idiopática/patología , Bleomicina/toxicidad , Regeneración , Péptidos y Proteínas de Señalización Intracelular
9.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225844

RESUMEN

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Animales , Ratones , Doxorrubicina , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción
10.
Cell Mol Life Sci ; 80(6): 145, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166489

RESUMEN

Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar progenitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression, signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of AT2 progenitors named "Injury-Activated Alveolar Progenitors" (IAAPs), which express low levels of Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-l1). IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progenitor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.


Asunto(s)
Antígeno B7-H1 , Pulmón , Ratones , Humanos , Animales , Antígeno B7-H1/metabolismo , Pulmón/metabolismo , Células Epiteliales Alveolares , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Diferenciación Celular/fisiología
11.
Signal Transduct Target Ther ; 8(1): 183, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160887

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most exciting classes of targeted therapy agents for cancers with homologous recombination (HR) deficiency. However, many patients without apparent HR defects also respond well to PARP inhibitors/cisplatin. The biomarker responsible for this mechanism remains unclear. Here, we identified a set of ribosomal genes that predict response to PARP inhibitors/cisplatin in HR-proficient patients. PARP inhibitor/cisplatin selectively eliminates cells with high expression of the eight genes in the identified panel via DNA damage (ATM) signaling-induced pro-apoptotic ribosomal stress, which along with ATM signaling-induced pro-survival HR repair constitutes a new model to balance the cell fate in response to DNA damage. Therefore, the combined examination of the gene panel along with HR status would allow for more precise predictions of clinical response to PARP inhibitor/cisplatin. The gene panel as an independent biomarker was validated by multiple published clinical datasets, as well as by an ovarian cancer organoids library we established. More importantly, its predictive value was further verified in a cohort of PARP inhibitor-treated ovarian cancer patients with both RNA-seq and WGS data. Furthermore, we identified several marketed drugs capable of upregulating the expression of the genes in the panel without causing HR deficiency in PARP inhibitor/cisplatin-resistant cell lines. These drugs enhance PARP inhibitor/cisplatin sensitivity in both intrinsically resistant organoids and cell lines with acquired resistance. Together, our study identifies a marker gene panel for HR-proficient patients and reveals a broader application of PARP inhibitor/cisplatin in cancer therapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ribosomas
12.
FASEB J ; 37(4): e22881, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934380

RESUMEN

Obesity is a major contributing factor for metabolic-associated fatty liver disease (MAFLD). Fibroblast growth factor (FGF) 1 is the first paracrine FGF family member identified to exhibit promising metabolic regulatory properties capable of conferring glucose-lowering and insulin-sensitizing effect. This study explores the role and molecular underpinnings of FGF1 in obesity-associated hepatic steatosis. In a mouse high-fat diet (HFD)-induced MAFLD model, chronic treatment with recombinant FGF1(rFGF1) was found to effectively reduce the severity of insulin resistance, hyperlipidemia, and inflammation. FGF1 treatment decreased lipid accumulation in the mouse liver and palmitic acid-treated AML12 cells. These effects were associated with decreased mature form SREBF1 expression and its target genes FASN and SCD1. Interestingly, we uncovered that rFGF1 significantly induced IGFBP2 expression at both mRNA and protein levels in HFD-fed mouse livers and cultured hepatocytes treated with palmitic acid. Adeno-associated virus-mediated IGFBP2 suppression significantly diminished the therapeutic benefit of rFGF1 on MAFLD-associated phenotypes, indicating that IGFBP2 plays a crucial role in the FGF1-mediated reduction of hepatic steatosis. Further analysis revealed that rFGF1 treatment reduces the recruitment of DNA methyltransferase 3 alpha to the IGFBP2 genomic locus, leading to decreased IGFBP2 gene methylation and increased mRNA and protein expression. Collectively, our findings reveal FGF1 modulation of lipid metabolism via epigenetic regulation of IGFBP2 expression, and unravel the therapeutic potential of the FGF1-IGFBP2 axis in metabolic diseases associated with obesity.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Resistencia a la Insulina , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Epigénesis Genética , Factor 1 de Crecimiento de Fibroblastos/farmacología , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Ácido Palmítico/farmacología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas Recombinantes/farmacología , Movilización Lipídica
13.
Cancer Med ; 12(5): 5979-5993, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329620

RESUMEN

Epithelium-specific ETS transcription factor 1 (ESE1) has been implicated in epithelial homeostasis, inflammation, as well as tumorigenesis, and cancer progression. However, numerous studies have reported contradictory roles-as an oncogene or a tumor suppressor of ESE1 in different cancers, and its function in the development and progression of pancreatic ductal adenocarcinoma (PDAC) has remained largely unexplored. Herein, we report that ESE1 was found upregulated in primary PDAC compared to normal pancreatic tissue, but high expression of ESE1 correlated to better relapse-free survival in patients with PDAC. Interestingly, ESE1 was found to exhibit dual roles in regulation of malignant properties of PDAC cells in that its overexpression promoted cell proliferation, whereas its downregulation enhanced epithelial-mesenchymal transition (EMT) phenotype. In the context of TGF-ß-induced EMT, ESE1 is markedly downregulated at post-transcriptional level, and reconstituted ESE1 expression partially reversed TGF-ß-induced EMT marker expression. Furthermore, we identify AGR2 as a novel transcriptional target of ESE1 that participates in TGF-ß-induced EMT in PDAC. Collectively, our findings reveal an ESE1/AGR2 axis that interacts with TGF-ß signaling to modulate EMT phenotype in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Recurrencia Local de Neoplasia/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Mucoproteínas/genética , Proteínas Oncogénicas/genética , Neoplasias Pancreáticas
14.
Cell Rep ; 41(12): 111863, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543133

RESUMEN

In injured airways of the adult lung, epithelial progenitors are called upon to repair by nearby mesenchymal cells via signals transmitted through the niche. Currently, it is unclear whether repair is coordinated by the mesenchymal cells that maintain the niche or by the airway epithelial cells that occupy it. Here, we show that the spatiotemporal expression of Fgf10 by the niche is primarily orchestrated by the niche's epithelial occupants-both those that reside prior to, and following, injury. During homeostasis, differentiated airway epithelial cells secrete Sonic hedgehog (Shh) to inhibit Fgf10 expression by Gli1+ peribronchial mesenchymal cells in the niche. After injury, remaining epithelial cells produce Wnt7b to induce Fgf10 expression in airway smooth muscle cells in the niche. We find that this reliance on a common activator of airway epithelial stem cells also allows for the recruitment of remote stem cell populations when local populations have been exhausted.


Asunto(s)
Proteínas Hedgehog , Células Madre Mesenquimatosas , Proteínas Hedgehog/metabolismo , Pulmón/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
15.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333491

RESUMEN

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Pulmón/metabolismo , Células Madre , Epitelio/fisiología , Células Epiteliales/metabolismo
16.
Cell Mol Life Sci ; 79(12): 609, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445537

RESUMEN

The specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate. In this paper, we build upon our previously published work on the regulation of airway epithelial progenitors by fibroblast growth factor receptor 2b (FGFR2b) signalling during early (E12.5) and mid (E14.5) pseudoglandular stage lung development. Our results suggest that a significant proportion of AT2 and AT1 progenitors are lineage-flexible during late pseudoglandular stage development, and that lineage commitment is regulated in part by FGFR2b signalling. We have characterized a set of direct FGFR2b targets at E16.5 which are likely involved in alveolar lineage formation. These signature genes converge on a subpopulation of AT2 cells later in development and are downregulated in AT2 cells transitioning to the AT1 lineage during repair after injury in adults. Our findings highlight the extensive heterogeneity of pneumocytes by elucidating the role of FGFR2b signalling in these cells during early airway epithelial lineage formation, as well as during repair after injury.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Células Madre , Animales , Ratones , Desarrollo Embrionario , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Pulmón/embriología , Linaje de la Célula
17.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954241

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with dire consequences and in urgent need of improved therapies. Compelling evidence indicates that damage or dysfunction of AT2s is of central importance in the development of IPF. We recently identified a novel AT2 subpopulation characterized by low SFTPC expression but that is enriched for PD-L1 in mice. These cells represent quiescent, immature AT2 cells during normal homeostasis and expand upon pneumonectomy (PNX) and were consequently named injury-activated alveolar progenitors (IAAPs). FGF10 is shown to play critical roles in lung development, homeostasis, and injury repair demonstrated in genetically engineered mice. In an effort to bridge the gap between the promising properties of endogenous Fgf10 manipulation and therapeutic reality, we here investigated whether the administration of exogenous recombinant FGF10 protein (rFGF10) can provide preventive and/or therapeutic benefit in a mouse model of bleomycin-induced pulmonary fibrosis with a focus on its impact on IAAP dynamics. C57BL/6 mice and SftpcCreERT2/+; tdTomatoflox/+ mice aged 8-10 weeks old were used in this study. To induce the bleomycin (BLM) model, mice were intratracheally (i.t.) instilled with BLM (2 µg/g body weight). BLM injury was induced after a 7-day washout period following tamoxifen induction. A single i.t. injection of rFGF10 (0.05 µg/g body weight) was given on days 0, 7, 14, and 21 after BLM injury. Then, the effects of rFGF10 on BLM-induced fibrosis in lung tissues were assessed by H&E, IHC, Masson's trichrome staining, hydroxyproline and Western blot assays. Immunofluorescence staining and flow cytometry was used to assess the dynamic behavior of AT2 lineage-labeled SftpcPos (IAAPs and mature AT2) during the course of pulmonary fibrosis. We observed that, depending on the timing of administration, rFGF10 exhibited robust preventive or therapeutic efficacy toward BLM-induced fibrosis based on the evaluation of various pathological parameters. Flow cytometric analysis revealed a dynamic expansion of IAAPs for up to 4 weeks following BLM injury while the number of mature AT2s was drastically reduced. Significantly, rFGF10 administration increased both the peak ratio and the duration of IAAPs expansion relative to EpCAMPos cells. Altogether, our results suggest that the administration of rFGF10 exhibits therapeutic potential for IPF most likely by promoting IAAP proliferation and alveolar repair.


Asunto(s)
Fibrosis Pulmonar , Animales , Bleomicina/uso terapéutico , Peso Corporal , Modelos Animales de Enfermedad , Factor 10 de Crecimiento de Fibroblastos/farmacología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo
18.
Mol Med ; 28(1): 73, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764933

RESUMEN

BACKGROUND: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are devastating clinical disorders with high mortality, and for which more effective therapies are urgently needed. FGF1, the prototype member of the FGF family, is shown to exert protective effects against injurious stimuli in multiple disease models. Here we aimed to evaluate whether FGF1 pretreatment is protective against LPS-induced ALI and elucidate the potential underlying mechanisms. METHODS: For drug-treated groups, C57B/6 mice received a single i.p. injection of FGF1 (1 mg/kg) 1 h before the LPS challenge or not. To induce the ALI model, the mice were treated by intratracheal instillation of LPS (5 mg/kg). Then, histopathological changes in lung tissues were assessed by hematoxylin and eosin staining and transmission electron microscopy. ELISA and qPCR assays were used to detect pro-inflammatory cytokine levels in BALF and lung tissues, respectively. The total number of inflammatory cells (neutrophils and macrophages) in BALF were counted using the Wright-Giemsa method. The expressions of reactive oxygen species (ROS) and malondialdehyde (MDA) were measured using their respective kits. Western blot and immunostaining were used to evaluate the expressions of antioxidants (Nrf-2, HO-1, SOD2, GPX4, and Catalase), as well as the inflammatory and/or apoptosis-related factors (TLR4, NF-κB, and Cleaved- caspase 3). RESULTS: FGF1 pretreatment significantly ameliorated the LPS-induced histopathological changes, reduced lung wet/dry ratios, ROS and MDA levels, total BALF protein, inflammatory cell infiltration, proinflammatory cytokine levels, and significantly increased the expression of antioxidant proteins (Nrf-2, HO-1, Catalase, and SOD2). In addition, FGF1 pretreatment significantly reduced the expression of TLR4 and cleaved- caspase 3, inhibited NF-κB activation, and reduced LPS-induced cell apoptosis. CONCLUSIONS: Altogether, our results suggest that FGF1 pretreatment is protective against LPS-induced ALI through mediating anti-inflammatory and antioxidant effects, which may be attributed to the downregulation of TLR4 expression and inhibition of NF-κB activation, as well as promotion of antioxidant defenses. Therefore, FGF1 administration may prove beneficial in preventative strategies for ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Factor 1 de Crecimiento de Fibroblastos/farmacología , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Caspasa 3/metabolismo , Catalasa/metabolismo , Catalasa/uso terapéutico , Citocinas/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipopolisacáridos/efectos adversos , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Receptor Toll-Like 4/metabolismo
19.
Front Cell Dev Biol ; 10: 853003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646902

RESUMEN

Glycogen synthase kinase-3ß (GSK-3ß) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3ß in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3ß animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene-referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3ß highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3ß and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.

20.
Cells ; 11(10)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626630

RESUMEN

Idiopathic lung fibrosis (IPF) is a fatal lung disease characterized by chronic epithelial injury and exhausted repair capacity of the alveolar compartment, associated with the expansion of cells with intermediate alveolar epithelial cell (AT2) characteristics. Using SftpcCreERT2/+: tdTomatoflox/flox mice, we previously identified a lung population of quiescent injury-activated alveolar epithelial progenitors (IAAPs), marked by low expression of the AT2 lineage trace marker tdTomato (Tomlow) and characterized by high levels of Pd-l1 (Cd274) expression. This led us to hypothesize that a population with similar properties exists in the human lung. To that end, we used flow cytometry to characterize the CD274 cell-surface expression in lung epithelial cells isolated from donor and end-stage IPF lungs. The identity and functional behavior of these cells were further characterized by qPCR analysis, in vitro organoid formation, and ex vivo precision-cut lung slices (PCLSs). Our analysis led to the identification of a population of CD274pos cells expressing intermediate levels of SFTPC, which was expanded in IPF lungs. While donor CD274pos cells initiated clone formation, they did not expand significantly in 3D organoids in AT2-supportive conditions. However, an increased number of CD274pos cells was found in cultured PCLS. In conclusion, we demonstrate that, similar to IAAPs in the mouse lung, a population of CD274-expressing cells exists in the normal human lung, and this population is expanded in the IPF lung and in an ex vivo PCLS assay, suggestive of progenitor cell behavior. CD274 function in these cells as a checkpoint inhibitor may be crucial for their progenitor function, suggesting that CD274 inhibition, unless specifically targeted, might further injure the already precarious lung epithelial compartment in IPF.


Asunto(s)
Antígeno B7-H1/metabolismo , Fibrosis Pulmonar Idiopática , Células Epiteliales Alveolares/metabolismo , Animales , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Ligandos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...