Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Transl Res ; 13(6): 6055-6065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306344

RESUMEN

EGFR/EGFR variant III (EGFRvIII) glioblastoma is seriously malignant, and the underlying mechanism remains unclear. In this study, EGFR and GLUT3 were found to be co-expressed in our collected tissues and associated with worse overall survival in glioblastoma via bioinformatics analysis. Functionally, in vitro and in vivo tests revealed that silencing GLUT3 substantially inhibited the viability of U87-EGFRvIII and LN229-EGFRvIII cells. Compared with wild-type U87 or LN229 cells, the expression level of SOX9 in U87-EGFRvIII or LN229-EGFRvIII cells (U87 and LN229 over-expressing EGFRvIII) was substantially increased. Chromatin immunoprecipitation and Dual-luciferase reporter assays revealed that SOX9 bound to the promoter of GLUT3 and promoted the expression of GLUT3. Collectively, our findings indicated that the EGFR/EGFRvIII-SOX9-GLUT3 axis mediated the tumourigenesis of glioblastoma and might be a potential target for glioblastoma therapy.

2.
Front Oncol ; 10: 590861, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330074

RESUMEN

Ferroptosis is a form of cell death characterized by non-apoptosis induced by small molecules in tumors. Studies have demonstrated that ferroptosis regulates the biological behaviors of tumors. Therefore, genes that control ferroptosis can be a promising candidate bioindicator in tumor therapy. Herein, functions of ferroptosis-related genes in glioma were investigated. We systematically assessed the relationship between ferroptosis-related genes expression profiles and prognosis in glioma patients based on The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) RNA sequencing datasets. Using the non-negative matrix factorization (NMF) clustering method, 84 ferroptosis-related genes in the RNA sequencing data were distinctly classified into two subgroups (named cluster 1 and cluster 2) in glioma. The least absolute shrinkage and selection operator (LASSO) was used to develop a 25 gene risk signature. The relationship between the gene risk signature and clinical features in glioma was characterized. Results show that the gene risk signature associated with clinical features can be as an independent prognostic indicator in glioma patients. Collectively, the ferroptosis-related risk signature presented in this study can potentially predict the outcome of glioma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA