Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Natl Sci Rev ; 11(9): nwae069, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39144743

RESUMEN

Although magnetism undoubtedly influences life on Earth, the science behind biological magnetic sensing is largely a mystery, and it has proved challenging, especially in the life sciences, to harness the interactions of magnetic fields (MFs) with matter to achieve specific ends. Using the well-established radical pair (RP) mechanism, we here demonstrate a bottom-up strategy for the exploitation of MF effects in living cells by translating knowledge from studies of RP reactions performed in vitro. We found an unprecedented MF dependence of the reactivity of singlet oxygen (1O2) towards electron-rich substrates (S) such as anthracene, lipids and iodide, in which [S ˙+ O2 ˙-] RPs are formed as a basis for MFs influencing molecular redox events in biological systems. The close similarity of the observed MF effects on the biologically relevant process of lipid peroxidation in solution, in membrane mimics and in living cells, shows that MFs can reliably be used to manipulate 1O2-induced cytotoxicity and cell-apoptosis-related protein expression. These findings led to a 'proof-of-concept' study on MF-assisted photodynamic therapy in vivo, highlighting the potential of MFs as a non-invasive tool for controlling cellular events.

2.
Front Pharmacol ; 15: 1336249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135806

RESUMEN

Retinal neovascularization is a common feature of several ocular neovascular diseases, which are the leading cause of blindness in the world. Current treatments are administered through invasive intravitreal injections, leading to poor patient compliance, serious ocular complications and heavy economic burdens. Thus, an alternative less or non-invasive therapeutic strategy is in demand. Here, a non-invasive oral tyrosine kinase inhibitor, CM082, was evaluated in a retinal neovascularization model induced by hypoxia in zebrafish larvae. We found that CM082 effectively suppressed retinal neovascularization, rescued cell loss in the retinal ganglion cell layer, and rescued the visual function deficiency. Our results elucidated that CM082 mediated its therapeutic efficacy primarily through the inhibition of Vegfr2 phosphorylation. The findings demonstrated that CM082 possessed strong antiangiogenic effects and may serve as a potential treatment for angiogenesis in ocular neovascular diseases.

3.
Chem Sci ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39129766

RESUMEN

Incorporating sulfur atoms into photosensitizers (PSs) has been well-established to populate triplet states and increase singlet oxygen (1O2) production when exposed to light. In this work, we found that progressive thiolation of porphyrin ß-periphery does promote intersystem crossing (ISC) between triplets and singlets, as seen in the excited state dynamics in dichloromethane or PS nanoparticles in water. However, in the latter case, more sulfur substitution deactivates 1O2 photosensitization, in contrast to the expected trend observed in dichloromethane. This observation was further supported by photocytotoxicity studies, where 1O2 photosensitization was switched off in living cells and multicellular spheroids despite being switched on in in vivo mice models. To understand the inconsistency, we performed molecular dynamics simulation and time-dependent density functional theory calculations to investigate possible aggregation and related excited states. We found that the extent of thiolation could regulate molecular packing inside nanoparticles, which gradually lowers the energy levels of triplet states even lower than that of 1O2 and, in turn, alters their energy dissipation pathways. Therefore, this study provides new insights into the design of metal-free PSs and sheds light on the excited state dynamics in aqueous media beyond the molecular level.

4.
Chembiochem ; 25(12): e202400105, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38639074

RESUMEN

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.


Asunto(s)
Aluminio , Antineoplásicos , Senescencia Celular , Etilenodiaminas , Platino (Metal) , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Etilenodiaminas/química , Etilenodiaminas/farmacología , Senescencia Celular/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Aluminio/química , Aluminio/farmacología , Animales , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química
5.
J Inorg Biochem ; 254: 112516, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38471287

RESUMEN

Tunichlorin, the naturally occurring chlorophyll cofactor containing Ni(II) ion, sets up a golden standard for designing the electrocatalysts for hydrogen evolution reaction (HER) via ß-peripheral modification. Besides the fine-tuning of the porphyrin ß-periphery such as adjusting the aromatics (the saturated level of tetrapyrrole) or installing hydroxyl group (hydrogen bond network) to enhance the catalytic HER efficiency, here we report that ß-fluorination of porphyrin is also an important approach to increase the reactivity of Ni(II) center. Benefiting the previously reported derivatization of ß-fluorinated porpholactones, we constructed a ß-fluorinated tunichlorin mimic (6). Compared with the non-fluorinated analogs (1, 3, and 5), we found that 2, 4, and 6 exhibit significant electrocatalytic HER reactivity acceleration (in terms of turnover frequencies, TOF, s-1) of ca. 37, 170, 133-fold, respectively. Mechanism studies suggested that ß-fluorination negatively shifts the metal complexes' reduction potentials and accelerates the electron transfer process, both contributing to the boosting of HER reaction. Notably, 6 showed an 890-fold increase of TOFs than 1, demonstrating the combining advantages of the of fluorination, hydrogenation, and hydroxylation at porphyrin ß-periphery.


Asunto(s)
Metaloporfirinas , Porfirinas , Porfirinas/química , Hidrógeno/química , Níquel/química , Halogenación , Catálisis
6.
Braz. J. Anesth. (Impr.) ; 73(6): 764-768, Nov.Dec. 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1520391

RESUMEN

Abstract Introduction: Propofol is a widely used anesthetic and its dose is closely related to aging. Telomere length (TL) is a unique heritable trait, and emerging as a biomarker of aging, health and disease. Telomerase RNA component (TERC) plays an important role in maintaining TL. We proposed a hypothesis that propofol dose in general anesthesia can be predicted by measuring TL before operation, which greatly reduced the risk of anesthesia, especially the elderly. Methods: The association between the propofol dose in anesthesia induction and: TL in the DNA of peripheral blood leukocytes; body weight; sex; difference of the Bispectral Index (BIS) before and after anesthesia induction in patients was evaluated by multivariable linear regression analyses. The mutation at the 5'end or 3'end of TERC was detected. We recruited 100 patients of elective surgery. Results: We found that propofol dose in anesthesia induction was clearly correlated significantly with TL (r = 0.78, p < 0.001), body weight (r = 0.84, p = 0.004), sex (r = 0.83, p= 0.84, p = 0.004), sex (r = 0.83, p = 0.004), and difference of BIS before and after anesthesia induction (r = 0.85, p = 0.029). By comparing the absolute values of standardized regression coefficients (0.58, 0.21, 0.19, and 0.12) of the four variables, it can be seen that TL contributes the most to the propofol dose in anesthesia induction. However, the mutation at the 5' end or 3' end of TERC was not found. Conclusions: These findings provide preliminary evidence that the propofol dose in anesthesia induction was clearly correlated with genetically determined TL. TL may be a promising predictor of the propofol dose, which is beneficial to improve the safety of anesthesia and reduce perioperative complications.


Asunto(s)
Humanos , Anciano , Propofol/farmacología , Peso Corporal , ADN , Telómero , Anestésicos Intravenosos/farmacología , Electroencefalografía , Anestesia General , Leucocitos
7.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5871-5880, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114183

RESUMEN

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1ß, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(ß-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and ß-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in rat serum, increased VEGF and ß-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and ß-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1ß. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing ß-EP levels.


Asunto(s)
Isquemia Encefálica , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/genética , Péptido Relacionado con Gen de Calcitonina/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Comprimidos
8.
J Am Chem Soc ; 145(42): 23257-23274, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37831944

RESUMEN

Phototheranostics have emerged as a promising subset of cancer theranostics owing to their potential to provide precise photoinduced diagnoses and therapeutic outcomes. However, the design of phototheranostics remains challenging due to the nature of tumors and their microenvironment, including limitations to the oxygen supply, high rates of recurrence and metastasis, and the immunosuppressive state of cancer cells. Here we report a dual-functional oxygen-independent phototheranostic agent, Ni-2, rationally designed to provide a near-infrared (NIR) photoactivated thermal- and hydroxyl radical (•OH)-enhanced photoimmunotherapeutic anticancer response. Under 880 nm laser irradiation, Ni-2 exhibited high photostability and excellent photoacoustic and photothermal effects with a photothermal conversion efficacy of 58.0%, as well as novel photoredox features that allowed the catalytic conversion of H2O2 to •OH upon photooxidation of Ni(II) to Ni(III). As a multifunctional photoagent, Ni-2 was found not only to inhibit tumor growth in a CT26 tumor-bearing mouse model but also to activate an immune response via a combination of photothermal- and H2O2-induced effects. When combined with an antiprogrammed death-ligand 1 (aPD-L1), Ni-2 treatment allowed for the suppression of distant tumor growth and cancer metastasis. Collectively, the present results provide support for the proposition that Ni-2 or its analogues could emerge as useful tools for photoimmunotherapy. They also highlight the potential of appropriately designed 3d transition metal complexes as "all- in-one" phototheranostics.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Níquel , Peróxido de Hidrógeno , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Oxígeno , Inmunoterapia , Línea Celular Tumoral , Microambiente Tumoral
9.
Angew Chem Int Ed Engl ; 62(36): e202307838, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37452698

RESUMEN

The gallium ion (Ga3+ ) has long been believed to disrupt ferric homeostasis in the body by competing with iron cofactors in metalloproteins, ultimately leading to cell death. This study revealed that through an indirect pathway, gallium can trigger ferroptosis, a type of non-apoptotic cell death regulated by iron. This is exemplified by the gallium complex of the salen ligand (Ga-1); we found that Ga-1 acts as an effective anion transporter that can affect the pH gradient and change membrane permeability, leading to mitochondrial dysfunction and the release of ferrous iron from the electron transfer chain (ETC). In addition, Ga-1 also targeted protein disulfide isomerases (PDIs) located in the endoplasmic reticulum (ER) membrane, preventing the repair of the antioxidant glutathione (GSH) system and thus enforcing ferroptosis. Finally, a combination treatment of Ga-1 and dietary polyunsaturated fatty acids (PUFAs), which enhances lipid peroxidation during ferroptosis, showed a synergistic therapeutic effect both in vitro and in vivo. This study provided us with a strategy to synergistically induce Ferroptosis in tumor cells, thereby enhancing the anti-neoplastic effect.


Asunto(s)
Ferroptosis , Muerte Celular , Hierro/metabolismo , Peroxidación de Lípido , Antioxidantes/metabolismo , Glutatión/metabolismo
10.
Chem Sci ; 14(8): 2070-2081, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36845938

RESUMEN

Bioconjugation, a synthetic tool that endows small molecules with biocompatibility and target specificity through covalent attachment of a biomolecule, holds promise for next-generation diagnosis or therapy. Besides the establishment of chemical bonding, such chemical modification concurrently allows alteration of the physicochemical properties of small molecules, but this has been paid less attention in designing novel bioconjugates. Here, we report a "two birds one stone" methodology for irreversible porphyrin bioconjugation based on ß-fluoropyrrolyl-cysteine SNAr chemistry, in which the ß-fluorine of porphyrin is selectively replaced by a cysteine in either peptides or proteins to generate novel ß-peptidyl/proteic porphyrins. Notably, due to the distinct electronic nature between fluorine and sulfur, such replacement makes the Q band red-shift to the near-infrared region (NIR, >700 nm). This facilitates intersystem crossing (ISC) to enhance the triplet population and thus singlet oxygen production. This new methodology features water tolerance, a fast reaction time (15 min), good chemo-selectivity, and broad substrate scope, including various peptides and proteins under mild conditions. To demonstrate its potential, we applied porphyrin ß-bioconjugates in several scenarios, including (1) cytosolic delivery of functional proteins, (2) metabolic glycan labeling, (3) caspase-3 detection, and (4) tumor-targeting phototheranostics.

11.
Chem Sci ; 14(6): 1434-1442, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794191

RESUMEN

Photothermal agents (PTAs) represent a core component of photothermal therapy (PTT). However, the current photothermal dyes are almost derived from well-known chromophores such as porphyrins, cyanine, and BODIPYs, and the design of new chromophores as versatile building blocks for PTA is considerably challenging because of the complexity of the modulation of excited-states. Herein, we adopted the concept of photoinduced nonadiabatic decay (PIND) to develop a photothermal boron-containing indoline-3-one-pyridyl chromophore (viz. BOINPY) with a facile one-pot synthesis and high yields. BOINPY derivatives exhibited specific features that fully address the concerns related to the design of PTA. The behavior and mechanism of BOINPYs for generating heat through the conical intersection pathway, which is called PIND, have been well understood through theoretical calculations. After encapsulation into the F127 copolymer, BOINPY@F127 nanoparticles displayed efficient photothermal conversion and performed well in the treatment of solid tumors upon light irradiation with good biocompatibility. This study provides useful theoretical guidance and concrete photothermal chromophores, which offer a versatile strategy embedding tunable properties for the development of diverse high-performance PTA.

12.
Braz J Anesthesiol ; 73(6): 764-768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34119568

RESUMEN

INTRODUCTION: Propofol is a widely used anesthetic and its dose is closely related to aging. Telomere length (TL) is a unique heritable trait, and emerging as a biomarker of aging, health and disease. Telomerase RNA component (TERC) plays an important role in maintaining TL. We proposed a hypothesis that propofol dose in general anesthesia can be predicted by measuring TL before operation, which greatly reduced the risk of anesthesia, especially the elderly. METHODS: The association between the propofol dose in anesthesia induction and: TL in the DNA of peripheral blood leukocytes; body weight; sex; difference of the Bispectral Index (BIS) before and after anesthesia induction in patients was evaluated by multivariable linear regression analyses. The mutation at the 5'end or 3'end of TERC was detected. We recruited 100 patients of elective surgery. RESULTS: We found that propofol dose in anesthesia induction was clearly correlated significantly with TL (r = 0.78, p < 0.001), body weight (r = 0.84, p = 0.004), sex (r = 0.83, p= 0.84, p = 0.004), sex (r = 0.83, p = 0.004), and difference of BIS before and after anesthesia induction (r = 0.85, p = 0.029). By comparing the absolute values of standardized regression coefficients (0.58, 0.21, 0.19, and 0.12) of the four variables, it can be seen that TL contributes the most to the propofol dose in anesthesia induction. However, the mutation at the 5' end or 3' end of TERC was not found. CONCLUSIONS: These findings provide preliminary evidence that the propofol dose in anesthesia induction was clearly correlated with genetically determined TL. TL may be a promising predictor of the propofol dose, which is beneficial to improve the safety of anesthesia and reduce perioperative complications.


Asunto(s)
Propofol , Humanos , Anciano , Propofol/farmacología , Anestésicos Intravenosos/farmacología , Anestesia General , ADN , Leucocitos , Peso Corporal , Telómero , Electroencefalografía
13.
Chem Sci ; 13(31): 8979-8988, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36091208

RESUMEN

The hypoxic microenvironment is considered the preponderant initiator to trigger a cascade of progression and metastasis of tumors, also being the major obstacle for oxygen consumption therapeutics, including photodynamic therapy (PDT). In this work, we report a programmable strategy at the molecular level to modulate the reciprocal interplay between tumor hypoxia, angiogenesis, and PDT outcomes by reinforcing synergistic action between a H2O2 scavenger, O2 generator and photosensitizer. The modular combination of a catalase biomimetic (tri-manganese cryptand, 1) and a photosensitizer (Ce6) allowed the rational design of a cascade reaction beginning with dismutation of H2O2 to O2 under hypoxic conditions to enhance photosensitization and finally photooxidation. Concurrently, this led to the decreased expression of the vascular endothelial growth factor (VEGF) and effectively reduced unwanted growth of blood vessels observed in the chick chorioallantois membrane (CAM). Notably, the proof-of-principle experiments using the tumor-bearing models proved successful in enhancing PDT efficacy, prolonging their life cycles, and improving immunity, which could be monitored by magnetic resonance imaging (MRI).

14.
Angew Chem Int Ed Engl ; 61(43): e202208707, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-35989247

RESUMEN

We report here the development of clickable and highly near-infrared (NIR) fluorescent lanthanide (Ln) complexes for bioorthogonal labeling of biomolecules. These azide- or alkyne-functionalized Ln complexes are hydrophilic and fluorogenic, exhibiting a strong increase of NIR fluorescence upon conjugation with biomolecules. Metabolic labeling of biomolecules with azide or alkyne, followed by click labeling with the Ln complexes, enables NIR fluorescence (NIRF) imaging of DNA, RNA, proteins, and glycans in cells. Furthermore, multicolor imaging is performed by combining click-labeling with the Ln complexes and immunostaining. In addition, the Ln complexes is compatible with click-expansion microscopy (click-ExM), which enables high-resolution NIRF imaging of cellular glycoproteins. Finally, the Ln complexes can be used for time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging, thus achieving the first example of dual-modal imaging combining NIRF and SIMS microscopies.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Azidas/química , Sondas Moleculares , Alquinos/química , ARN , Glicoproteínas , Espectrometría de Masas , Polisacáridos , Colorantes Fluorescentes/química , Química Clic/métodos
15.
Chem Soc Rev ; 51(14): 6177-6209, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35792133

RESUMEN

In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.


Asunto(s)
Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética/métodos , Medicina de Precisión , Nanomedicina Teranóstica/métodos
16.
Front Cardiovasc Med ; 9: 834714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722120

RESUMEN

Purpose: To evaluate the value of dynamic monitoring of procalcitonin (PCT) as a biomarker for the early diagnosis of postoperative infections in patients undergoing cardiac surgery. Methods: In total, 252 patients who underwent cardiac surgery were retrospectively included. The postoperative patients' PCT level, change value (△PCT), and clearance rate (△PCTc) were compared between the infected and noninfected groups in adult and pediatric patients on postoperative days (PODs) 1, 3, and 5. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the diagnostic value. Results: Procalcitonin concentration decreased progressively in the noninfected group in adult and pediatric patients; PCT concentration continued to rise until it peaked on POD 3 in the infected group. In adult patients, the AUC of PCT for diagnosis of infection on PODs 1, 3, and 5 were 0.626, 0.817, and 0.806, with the optimal cut-off values of 7.35, 3.63, and 1.73 ng/ml, respectively. The diagnostic efficiency of △PCT3 and △PCT C3 was significantly better than △PCT5 and △PCT C5 , respectively. In pediatric patients, the AUC of PCT for diagnosis of infection on PODs 1, 3, and 5 were 0.677, 0.747, and 0.756, respectively, and the optimal cut-off values were 27.62, 26.15, and 10.20 ng/ml. Conclusion: This study showed that dynamic monitoring of PCT levels could be an effective clinical means to help to discover postoperative infection earlier. The PCT level and its change indicators on POD 3 in adult patients and the PCT level on POD 5 in children can indicate infection.

17.
Top Curr Chem (Cham) ; 380(5): 31, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35715540

RESUMEN

Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.


Asunto(s)
Complejos de Coordinación , Elementos de la Serie de los Lantanoides , Bioensayo , Luminiscencia
18.
Angew Chem Int Ed Engl ; 61(28): e202204330, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35445526

RESUMEN

Photodynamic therapy (PDT) is a non-invasive treatment modality against a range of cancers and nonmalignant diseases, however one must be aware of the risk of causing phototoxic reactions after treatment. We herein report a bioinspired design of next-generation photosensitizers (PSs) that not only effectively produce ROS but undergo fast metabolism after treatment to overcome undesirable side effects. We constructed a series of ß-pyrrolic ring-opening seco-chlorins, termed beidaphyrin (BP), beidapholactone (BPL), and their zinc(II) derivatives (ZnBP and ZnBPL), featuring intense near-infrared absorption and effective O2 photosensitization. Irradiation of ZnBPL led to a non-cytotoxic, metabolizable beidaphodiacetamide (ZnBPD) via in situ generated O2.- but not 1 O2 , as revealed by mechanistic studies including time-resolved absorption, kinetics, and isotope labeling. Furthermore, water-soluble ZnBPL showed an effective therapeutic outcome, fast metabolism, and negligible phototoxic reactions.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Porfirinas/uso terapéutico
19.
J Am Chem Soc ; 144(16): 7346-7356, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420807

RESUMEN

Earth-abundant metal-based theranostics, agents that integrate diagnostic and therapeutic functions within the same molecule, may hold the key to the development of low-cost personalized medicines. Here, we report a set of O-linked nonaromatic benzitripyrrin (C^N^N^N) macrocyclic organonickel(II) complexes, Ni-1-4, containing strong σ-donating M-C bonds. Complexes Ni-1-4 are characterized by a square-planar coordination geometry as inferred from the structural studies of Ni-1. They integrate photothermal therapy, photothermal imaging, and photoacoustic imaging (PAI) within one system. This makes them attractive as potential phototheranostics. Relative to traditional Ni(II) porphyrins, such as F20TPP (tetrapentafluorophenylporphyrin), the lowest energy absorption of Ni-1 is shifted into the near infrared region, presumably as a consequence of Ni-C bonding. Ultrafast transient absorption spectroscopy combined with theoretical calculations revealed that, upon photoexcitation, a higher population of ligand-centered and 3MLCT states is seen in Ni-1 relative to NiTPBP (TPBP = 6,11,16,21-tetraphenylbenziporphyrin). Encapsulating Ni-1 in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) afforded nanoparticles, Ni-1@DSPE, displaying red-shifted absorption features, as well as good photothermal conversion efficiency (∼45%) in aqueous media. Proof-of-principle experiments involving thrombus treatment were carried out both in vitro and in vivo. It was found that Ni-1@DSPE in combination with 785 nm photo-irradiation for 3 min (0.3 W/cm2) proved successful in removing blood clots from a mouse thrombus model as monitored by photoacoustic imaging (PAI). The present work highlights the promise of organonickel(II) complexes as potential theranostics and the benefits that can accrue from manipulating the excited-state features of early transition-metal complexes via, for example, interrupting π-conjugation pathways.


Asunto(s)
Complejos de Coordinación , Nanopartículas , Elementos de Transición , Animales , Complejos de Coordinación/química , Ligandos , Metales/química , Ratones , Nanopartículas/química
20.
Chem Asian J ; 17(10): e202200181, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35343080

RESUMEN

Molecular phototheranostics as an emerging field of modern precision medicine has recently attracted increasing research attention owing to non-invasiveness, high precision, and controllable nature of light. In this work, we reported promising gadolinium (Gd3+ ) porphyrinoids as phototheranostic agents for magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The synthesized Gd-1-4-Glu featured with meso-glycosylation and ß-lactonization to endow good biocompatibility and improved photophysical properties. In particular, ß-lactonization of glycosylated Gd3+ porphyrinoids substantially red-shifted Q band absorption to near-infrared (NIR) region and boosted generation of reactive oxygen species including 1 O2 , and some radical species that engaged in both type II and type I PDT pathways. In addition, the number and regioisomerism of ß-oxazolone moieties was observed to play an essential role in improving longitude relaxivity (r1 ) of Gd-1-4-Glu of up to 4.3±0.2 mM-1 s-1 by affecting environmental water exchange. Taking Gd-4-Glu as a promising complex, we further achieved real-time T1 -weighted MRI and PDT on HeLa tumour mice in vivo, revealing the appealing potential of Gd3+ porphyrinoids in phototheranostics.


Asunto(s)
Gadolinio , Fotoquimioterapia , Animales , Gadolinio/farmacología , Células HeLa , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...