Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
J Sep Sci ; 47(15): e2400140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108164

RESUMEN

In this article, chiral covalent organic framework core-shell composite CCOF-TpPa-Py@SiO2 was facilely synthesized by induction at room temperature. The CCOF-TpPa-Py@SiO2 core-shell composite was used as a chiral stationary phase for the separation of the racemates by high-performance liquid chromatography, which exhibits good separation performance for chiral compounds including ketones, alcohols, esters, epoxides, carboxylic acids, amides, and amines. The effects of analyte injection mass on the enantioseparation were studied. The reproducibility and stability of the CCOF-TpPa-Py@SiO2 chiral column were explored. The intra-day (n = 5), inter-day (n = 5), and inter-column (n = 3) relative standard deviations for the migration times and resolution of benzoin were 0.32%-0.54%, 0.45%-0.61%, and 1.21%-1.53%, respectively. In addition, the chiral separation ability of the CCOF-TpPa-Py@SiO2 chiral column (column A) was compared with that of the MDI-ß-CD-Modified COF@SiO2 (column B) as well as a commercial chiral column (Chiralpak AD-H). The chiral recognition ability of column A is complementary to that of column B and AD-H column. The resolution mechanism of CCOF-TpPa-Py@SiO2 stationary phase towards chiral analyte was explored. Hence, the synthesis of CCOF-TpPa-Py@SiO2 core-shell composite by induction at room temperature as chiral stationary phases for chromatographic separation has important research potential and application prospects.

2.
Cancer Lett ; : 217183, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153728

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.

3.
J Chromatogr A ; 1732: 465231, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39133951

RESUMEN

Macrocycles play vital roles in supramolecular chemistry and chromatography. 1,1'-Bi-2-naphthol (BINOL)-based chiral polyimine macrocycles are an emerging class of chiral macrocycles that can be constructed by one-step aldehyde-amine condensation of BINOL derivatives with other building blocks. These macrocycles exhibit good characteristics, such as facile preparation, rigid cyclic structures, multiple chiral centers, and defined molecular cavities, that make them good candidates as new chiral recognition materials for chromatographic enantioseparations. In this study, a BINOL-based [2+2] chiral polyimine macrocycle was synthesized by one-step condensation of enantiopure (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with (1R,2R)-1,2-diaminocyclohexane. The product was modified with 5-bromo-1-pentene and then attached to thiolated silica using click chemistry to construct a new chiral stationary phase (CSP). The enantioselectivity of the new CSP was explored by separating various racemates under normal phase (NP) and reversed phase (RP) high performance liquid chromatography (HPLC). Thirteen racemates and eight racemates were enantioseparated under the two separation modes, respectively, including chiral alcohols, phenols, esters, ketones, amines, and organic acids. Among them, nine racemates achieved baseline separation under NP-HPLC and seven racemates achieved baseline separation under RP-HPLC. High resolution separation was observed with benzoin (Rs = 5.10), epinephrine (Rs = 4.98), 3-benzyloxy-1,2-propanediol (Rs = 4.42), and 4,4'-dimethylbenzoin (Rs = 4.52) in NP-HPLC, and with 4-methylbenzhydrol (Rs = 4.72), benzoin ethyl ether (Rs = 3.79), 1-phenyl-1-pentanol (Rs = 3.68), and 1-(3-bromophenyl)ethanol (Rs = 3.60) in RP-HPLC. Interestingly, the CSP complemented Chiralcel OD-H, Chiralpak AD-H, and CYCLOBOND I 2000 RSP columns for resolution of these test racemates, separating several racemic compounds that could not be well separated by the three commercially available columns. The influences of injected sample amount on separation were also evaluated. It was found that the column exhibited excellent stability and reproducibility after hundreds of injections, and the relative standard deviations (n = 5) of the retention time and resolution were less than 0.49% and 0.69%, respectively. This study indicates that the BINOL-based chiral macrocycle has great potential for HPLC enantioseparation.

4.
Nat Commun ; 15(1): 5959, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009629

RESUMEN

Understanding the mechanisms controlling forest carbon accumulation is crucial for predicting and mitigating future climate change. Yet, it remains unclear whether the dominance of ectomycorrhizal (EcM) trees influences the carbon accumulation of entire forests. In this study, we analyzed forest inventory data from over 4000 forest plots across Northeast China. We find that EcM tree dominance consistently exerts a positive effect on tree, soil, and forest carbon stocks. Moreover, we observe that these positive effects are more pronounced during unfavorable climate conditions, at lower tree species richness, and during early successional stages. This underscores the potential of increasing the dominance of native EcM tree species not only to enhance carbon stocks but also to bolster resilience against climate change in high-latitude forests. Here we show that forest managers can make informed decisions to optimize carbon accumulation by considering various factors such as mycorrhizal types, climate, successional stages, and species richness.


Asunto(s)
Carbono , Cambio Climático , Bosques , Micorrizas , Suelo , Árboles , Micorrizas/fisiología , Árboles/microbiología , Árboles/metabolismo , Carbono/metabolismo , China , Suelo/química
5.
Adv Sci (Weinh) ; : e2405158, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021327

RESUMEN

Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.

6.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062941

RESUMEN

Wheat is one of the most important food crops globally, and understanding the regulation of grain size is crucial for wheat breeding to achieve a higher grain yield. MicroRNAs (miRNAs) play vital roles in plant growth and development. However, the miRNA-mediated mechanism underlying grain size regulation remains largely elusive in wheat. Here, we report the characterization and functional validation of a miRNA, TamiR397a, associated with grain size regulation in wheat. The function of three TaMIR397 homoeologs was determined through histochemical ß-glucuronidase-dependent assay. MiRNA expression was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the function of TamiR397a was validated through its transgenic overexpression and repression in wheat. It was found that TaMIR397-6A and TaMIR397-6B encode active TamiR397a. The expression profiling indicated that TamiR397a was differentially expressed in various tissues and gradually up-regulated during grain filling. The inhibition of TamiR397a perturbed grain development, leading to a decrease in grain size and weight. Conversely, the overexpression of TamiR397a resulted in increased grain size and weight by accelerating the grain filling process. Transcriptome analysis revealed that TamiR397a regulates a set of genes involved in hormone response, desiccation tolerance, regulation of cellular senescence, seed dormancy, and seed maturation biological processes, which are important for grain development. Among the down-regulated genes in the grains of the TamiR397a-overexpressing transgenic plants, 11 putative targets of the miRNA were identified. Taken together, our results demonstrate that TamiR397a is a positive regulator of grain size and weight, offering potential targets for breeding wheat with an increased grain yield.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , MicroARNs , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Poliploidía , Plantas Modificadas Genéticamente/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Sci Rep ; 14(1): 15684, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977919

RESUMEN

The global spread of COVID-19 has profoundly affected health and economies, highlighting the need for precise epidemic trend predictions for effective interventions. In this study, we used infectious disease models to simulate and predict the trajectory of COVID-19. An SEIR (susceptible, exposed, infected, removed) model was established using Wuhan data to reflect the pandemic. We then trained a genetic algorithm-based SEIR (GA-SEIR) model using data from a specific U.S. region and focused on individual susceptibility and infection dynamics. By integrating socio-psychological factors, we achieved a significant enhancement to the GA-SEIR model, leading to the development of an optimized version. This refined GA-SEIR model significantly improved our ability to simulate the spread and control of the epidemic and to effectively track trends. Remarkably, it successfully predicted the resurgence of COVID-19 in mainland China in April 2023, demonstrating its robustness and reliability. The refined GA-SEIR model provides crucial insights for public health authorities, enabling them to design and implement proactive strategies for outbreak containment and mitigation. Its substantial contributions to epidemic modelling and public health planning are invaluable, particularly in managing and controlling respiratory infectious diseases such as COVID-19.


Asunto(s)
Algoritmos , COVID-19 , COVID-19/epidemiología , COVID-19/virología , COVID-19/psicología , Humanos , China/epidemiología , SARS-CoV-2 , Pandemias , Estados Unidos/epidemiología
8.
Mikrochim Acta ; 191(8): 445, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958767

RESUMEN

A novel CCOF core-shell composite material (S)-DTP-COF@SiO2 was prepared via asymmetric catalytic and in situ growth strategy. The prepared (S)-DTP-COF@SiO2 was utilized as separation medium for HPLC enantioseparation using normal-phase and reversed-phase chromatographic modes, which displays excellent chiral separation performance for alcohols, esters, ketones, and epoxides, etc. Compared with chiral commercial chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some previously reported chiral CCOF@SiO2 (CC-MP CCTF@SiO2 and MDI-ß-CD-modified COF@SiO2)-packed columns, there are 4, 3, 13, and 15 tested racemic compounds that could not be resolved on the Chiralpak AD-H column, Chiralcel OD-H column, CC-MP CCTF@SiO2 column, and MDI-ß-CD-modified COF@SiO2 column, respectively, which indicates that the resolution effect of (S)-DTP-COF@SiO2-packed column can be complementary to the other ones. The effects of the analyte mass, column temperature, and mobile phase composition on the enantiomeric separation were investigated. The chiral column exhibits good reproducibility after multiple consecutive injections. The RSDs (n = 5) of the peak area and retention time were less than 1.5% for repetitive separation of 2-methoxy-2-phenylethanol and 1-phenyl-1-pentanol. The chiral core-shell composite (S)-DTP-COF@SiO2 exhibited good enantiomeric separation performance, which not only demonstrates its potential as a novel CSP material in HPLC but also expands the range of applications for chiral COFs.

9.
Talanta ; 277: 126388, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870759

RESUMEN

Metal organic cages (MOCs), as an emerging discrete supramolecular compounds, have received widespread attention in separation, biomedicine, gas capture, catalysis, and molecular recognition due to their porosity, adjustability and stability. Herein, we present a new chiral MOC FeII4L4 coated capillary column prepared for gas chromatographic (GC) separation of different types of organic compounds, including n-alkanes, n-alcohols, alkylbenzenes, isomers, especially for racemic compounds. There are 20 different kinds of racemates (e.g., alcohols, ethers, epoxides, esters, alkenes, and aldehydes) were well resolved on the FeII4L4 chiral column and a maximum resolution value for 1-phenyl-1-propanol reaches 6.17. The FeII4L4 coated column exhibited high column efficiency (3100 plates m-1 for n-dodecane) and good enantiomeric resolution complementary to that of a commercial ß-DEX 120 column and the previously reported chiral MOC [Fe4L6] (ClO4)8 coated column. The relative standard deviation (RSDs) of the peak area and retention time of glycidol and nitrotoluene were below 1.2 %. This study reveals that chiral MOCs have good application prospects in chromatographic separation.

10.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916997

RESUMEN

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Asunto(s)
Cilios , Hidrocefalia , Microtúbulos , Animales , Femenino , Humanos , Masculino , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/metabolismo , Cilios/metabolismo , Cilios/patología , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/patología , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología
11.
Sci Rep ; 14(1): 13480, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866837

RESUMEN

The long-term trends in maternal and child health (MCH) in China and the national-level factors that may be associated with these changes have been poorly explored. This study aimed to assess trends in MCH indicators nationally and separately in urban and rural areas and the impact of public policies over a 30‒year period. An ecological study was conducted using data on neonatal mortality rate (NMR), infant mortality rate (IMR), under-five mortality rate (U5MR), and maternal mortality ratio (MMR) nationally and separately in urban and rural areas in China from 1991 to 2020. Joinpoint regression models were used to estimate the annual percentage changes (APC), average annual percentage changes (AAPC) with 95% confidence intervals (CIs), and mortality differences between urban and rural areas. From 1991 to 2020, maternal and child mortalities in China gradually declined (national AAPC [95% CI]: NMRs - 7.7% [- 8.6%, - 6.8%], IMRs - 7.5% [- 8.4%, - 6.6%], U5MRs - 7.5% [- 8.5%, - 6.5%], MMRs - 5.0% [- 5.7%, - 4.4%]). However, the rate of decline nationally in child mortality slowed after 2005, and in maternal mortality after 2013. For all indicators, the decline in mortality was greater in rural areas than in urban areas. The AAPCs in rate differences between rural and urban areas were - 8.5% for NMRs, - 8.6% for IMRs, - 7.7% for U5MRs, and - 9.6% for MMRs. The AAPCs in rate ratios (rural vs. urban) were - 1.2 for NMRs, - 2.1 for IMRs, - 1.7 for U5MRs, and - 1.9 for MMRs. After 2010, urban‒rural disparity in MMR did not diminish and in NMR, IMR, and U5MR, it gradually narrowed but persisted. MCH indicators have declined at the national level as well as separately in urban and rural areas but may have reached a plateau. Urban‒rural disparities in MCH indicators have narrowed but still exist. Regular analyses of temporal trends in MCH are necessary to assess the effectiveness of measures for timely adjustments.


Asunto(s)
Salud Infantil , Mortalidad del Niño , Mortalidad Infantil , Salud Materna , Mortalidad Materna , Población Rural , Población Urbana , Humanos , China/epidemiología , Salud Infantil/tendencias , Femenino , Lactante , Salud Materna/tendencias , Mortalidad Infantil/tendencias , Preescolar , Mortalidad del Niño/tendencias , Mortalidad Materna/tendencias , Niño , Recién Nacido , Masculino
12.
Soc Sci Med ; 353: 117046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878594

RESUMEN

The traditional Chinese medicine (TCM) industry in China exhibits significant regional disparities in health service utilization, the underlying reasons for which are yet to be fully explored. This study employs Geodetector models to analyze the factors affecting TCM service utilization, providing the first examination of spatial distribution patterns and influencing factors for both TCM outpatient (TCMOSU) and inpatient services (TCMISU). The findings of this study reveal spatial disparities across China's provinces, showing a prevalence of TCMOSU in the east and TCMISU decreasing from southwest to northeast. Global Moran's I autocorrelation analysis revealed a positive spatial correlation between TCMOSU and TCMISU across Chinese provinces, suggesting spatial clustering and the potential for interregional collaboration in the development of TCM services. Local Moran's I autocorrelation analysis revealed clusters of TCMOSU in wealthier eastern provinces, such as Jiangsu and Tianjin, and clusters of TCMISU in the southwest. Factor detector analysis revealed that disposable income per capita was the most significant factor linking higher incomes with increased TCMOSU. In contrast, TCMISU was primarily influenced by demographic factors, such as the illiteracy rate and population urbanization rate, emphasizing traditional practices in lower education regions. Interaction detector analysis revealed the joint effects of these factors, demonstrating how regional economic status, health status, and healthcare resource indicators interact with other factors for TCMOSU and how demographic factors significantly influence the prevalence of TCMISU. This study highlights the importance of considering health status together with regional economic, demographic, and healthcare resources when formulating TCM healthcare policies and allocating such resources in China. Promoting the balanced and coordinated regional development of TCM services across the country requires the development of strategies that account for these varied regional characteristics.


Asunto(s)
Medicina Tradicional China , Factores Socioeconómicos , Análisis Espacial , Humanos , China/epidemiología , Medicina Tradicional China/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos
13.
Crit Rev Food Sci Nutr ; : 1-22, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779723

RESUMEN

A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.

15.
Sci Rep ; 14(1): 12447, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38822039

RESUMEN

The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.


Asunto(s)
Proliferación Celular , Neoplasias Endometriales , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B , Transducción de Señal , Humanos , Femenino , FN-kappa B/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Línea Celular Tumoral , Animales , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/metabolismo , Síndromes Neoplásicos Hereditarios/patología , Reparación de la Incompatibilidad de ADN , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Encefálicas
16.
BMC Pregnancy Childbirth ; 24(1): 233, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570745

RESUMEN

BACKGROUND: The association of genital Mollicutes infection transition with adverse pregnancy outcomes was insignificant among general pregnant women, but there remains a paucity of evidence linking this relationship in gestational diabetes mellitus (GDM) women. The aim was to investigate the association between genital Mollicutes infection and transition and adverse pregnancy outcomes in GDM women, and to explore whether this association still exist when Mollicutes load varied. METHODS: We involved pregnant women who attended antenatal care in Chongqing, China. After inclusion and exclusion criteria, we conducted a single-center cohort study of 432 GDM women with pregnancy outcomes from January 1, 2018 to December 31, 2021. The main outcome was adverse pregnancy outcomes, including premature rupture of membrane (PROM), fetal distress, macrosomia and others. The exposure was Mollicutes infection, including Ureaplasma urealyticum (Uu) and Mycoplasma hominis (Mh) collected in both the second and the third trimesters, and testing with polymerase chain reaction method. The logistic regression models were used to estimate the relationship between Mollicutes infection and adverse pregnancy outcomes. RESULTS: Among 432 GDM women, 241 (55.79%) were infected with genital Mollicutes in either the second or third trimester of pregnancy. At the end of the pregnancy follow-up, 158 (36.57%) participants had adverse pregnancy outcomes, in which PROM, fetal distress and macrosomia were the most commonly observed adverse outcomes. Compared with the uninfected group, the Mollicutes (+/-) group showed no statistical significant increase in PROM (OR = 1.05, 95% CI:0.51 ∼ 2.08) and fetal distress (OR = 1.21, 95% CI: 0.31 ∼ 3.91). Among the 77 participants who were both Uu positive in the second and third trimesters, 38 participants presented a declined Uu load and 39 presented an increased Uu load. The Uu increased group had a 2.95 odds ratio (95% CI: 1.10~8.44) for adverse pregnancy outcomes. CONCLUSION: Mollicutes infection and transition during trimesters were not statistically associated with adverse pregnancy outcomes in GDM women. However, among those consistent infections, women with increasing Uu loads showed increased risks of adverse pregnancy outcomes. For GDM women with certain Mollicutes infection and colonization status, quantitative screening for vaginal infection at different weeks of pregnancy was recommended to provide personalized fertility treatment.


Asunto(s)
Diabetes Gestacional , Tenericutes , Embarazo , Femenino , Humanos , Resultado del Embarazo/epidemiología , Diabetes Gestacional/diagnóstico , Tercer Trimestre del Embarazo , Macrosomía Fetal/etiología , Estudios de Cohortes , Estudios Prospectivos , Sufrimiento Fetal , Aumento de Peso , Genitales
17.
Artículo en Inglés | MEDLINE | ID: mdl-38686647

RESUMEN

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

18.
Mikrochim Acta ; 191(5): 281, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649632

RESUMEN

Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m-1 for (4-fluorophenyl)ethanol and 18,900 plates m-1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.

19.
Sci Total Environ ; 928: 172462, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615761

RESUMEN

Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 ± 2.4 Mm-1, which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 ± 1.2 Mm-1]. During the study period, the absorption Ångström exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.

20.
Foods ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38472812

RESUMEN

The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...