Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Biomaterials ; 311: 122696, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38971121

RESUMEN

Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-ß. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.

2.
Diagnostics (Basel) ; 14(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928720

RESUMEN

Heart transplantation (HT) is the mainstream therapy for end-stage heart disease. However, the cardiac graft function can be affected by several factors. It is important to monitor HT patients for signs of graft dysfunction. Transthoracic echocardiography is a simple, first-line, and non-invasive method for the assessment of cardiac function. The emerging speckle-tracking echocardiography (STE) could quickly and easily provide additive information over traditional echocardiography. STE longitudinal deformation parameters are markers of early impairment of ventricular function. Although once called the "forgotten ventricle", right ventricular (RV) assessment has gained attention in recent years. This review highlights the potentially favorable role of STE in assessing RV systolic function in clinically well HT patients.

3.
Open Life Sci ; 19(1): 20220795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867921

RESUMEN

Drug testing has many test elements. It aims to prevent unqualified drugs from entering the market and ensure drug safety. The existing artificial intelligence (AI) online monitoring system identifies active ingredients in the process of use. Owing to their openness, data are easy to be lost, failing to meet user needs and inducing a specific impact on the use of the monitoring system. With the continuous development of computer and measurement technologies, various biochemical data are increasing at an unprecedented speed, and numerous databases are emerging. Extracting patterns from considerable known data and experimental facts is an essential task for a wide range of biological and chemical workers. Pattern recognition is one of the essential technologies for data mining. It is widely used in industry, agriculture, national defense, biomedicine, meteorology, astronomy, and other fields. To improve the effect of the online drug ingredient recognition system, this study used AI to design an online drug ingredient recognition-embedded monitoring system and applied AI to the teaching field to improve teaching efficiency. First, this study constructed the framework of the AI online drug ingredient recognition-embedded monitoring system and introduced the process of online drug ingredient recognition. Then, it introduced the pattern recognition method, constructed the pattern recognition system, and presented the pattern recognition algorithm and the algorithm evaluation index. Afterward, it used pattern recognition to conduct a qualitative analysis of the infrared spectrum of drug components and introduced the overall process of the qualitative analysis. In addition, this study employed AI to implement changes to the embedded system instruction in colleges and universities, summarizing the current issues. The impact of drug component recognition and the educational impact of embedded systems were investigated in the experimental portion. The experimental findings demonstrated the excellent accuracy, sensitivity, specificity, and Matthew correlation coefficient of the online drug component recognition-integrated monitoring system in this work. Compared with that of other systems, its average drug component recognition accuracy was above 0.85. Students in five majors reported high levels of satisfaction with the embedded system teaching, which is better for delivering college instruction.

5.
Adv Sci (Weinh) ; 11(26): e2309907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696589

RESUMEN

Myocardial ischemia/reperfusion injury (MIRI) is the leading cause of irreversible myocardial damage. A pivotal pathogenic factor is ischemia/reperfusion (I/R)-induced cardiomyocyte ferroptosis, marked by iron overload and lipid peroxidation. However, the impact of lipid droplet (LD) changes on I/R-induced cardiomyocyte ferroptosis is unclear. In this study, an aggregation-induced emission probe, TPABTBP is developed that is used for imaging dynamic changes in LD during myocardial I/R-induced ferroptosis. TPABTBP exhibits excellent LD-specificity, superior capability for monitoring lipophagy, and remarkable photostability. Molecular dynamics (MD) simulation and super-resolution fluorescence imaging demonstrate that the TPABTBP is specifically localized to the phospholipid monolayer membrane of LDs. Imaging LDs in cardiomyocytes and myocardial tissue in model mice with MIRI reveals that the LD accumulation level increase in the early reperfusion stage (0-9 h) but decrease in the late reperfusion stage (>24 h) via lipophagy. The inhibition of LD breakdown significantly reduces the lipid peroxidation level in cardiomyocytes. Furthermore, it is demonstrated that chloroquine (CQ), an FDA-approved autophagy modulator, can inhibit ferroptosis, thereby attenuating MIRI in mice. This study describes the dynamic changes in LD during myocardial ischemia injury and suggests a potential therapeutic target for early MIRI intervention.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Gotas Lipídicas , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Ratones , Miocitos Cardíacos/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Gotas Lipídicas/metabolismo , Masculino , Simulación de Dinámica Molecular , Peroxidación de Lípido
6.
Mycopathologia ; 189(3): 34, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637353

RESUMEN

Central nervous system (CNS) infections represent a challenge due to the complexities associated with their diagnosis and treatment, resulting in a high incidence rate and mortality. Here, we presented a case of CNS mixed infection involving Candida and human cytomegalovirus (HCMV), successfully diagnosed through macrogenomic next-generation sequencing (mNGS) in China. A comprehensive review and discussion of previously reported cases were also provided. Our study emphasizes the critical role of early pathogen identification facilitated by mNGS, underscoring its significance. Notably, the integration of mNGS with traditional methods significantly enhances the diagnostic accuracy of CNS infections. This integrated approach has the potential to provide valuable insights for clinical practice, facilitating early diagnosis, allowing for treatment adjustments, and ultimately, improving the prognosis for patients with CNS infections.


Asunto(s)
Infecciones del Sistema Nervioso Central , Coinfección , Humanos , Sistema Nervioso Central , Diagnóstico Precoz , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Infecciones del Sistema Nervioso Central/diagnóstico , Sensibilidad y Especificidad , Estudios Retrospectivos
7.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38671916

RESUMEN

Oxidative stress causes gut dysfunction and is a contributing factor in several intestinal disorders. Intestinal epithelial cell survival is essential for maintaining human and animal health under oxidative stress. 18beta-Glycyrrhetinic acid (GA) is known to have multiple beneficial effects, including antioxidant activity; however, the underlying molecular mechanisms have not been well established. Thus, the present study evaluated the therapeutic effects of GA on H2O2-induced oxidative stress in intestinal porcine epithelial cells. The results showed that pretreatment with GA (100 nM for 16 h) significantly increased the levels of several antioxidant enzymes and reduced corresponding intracellular levels of reactive oxidative species and malondialdehyde. GA inhibited cell apoptosis via activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, as confirmed by RNA sequencing. Further analyses demonstrated that GA upregulated the phosphorylation levels of PI3K and Akt and the protein level of B cell lymphoma 2, whereas it downregulated Cytochrome c and tumor suppressor protein p53 levels. Moreover, molecular docking analysis predicted the binding of GA to Vasoactive intestinal peptide receptor 1, a primary membrane receptor, to activate the PI3K/Akt signaling pathway. Collectively, these results revealed that GA protected against H2O2-induced oxidative damage and cell apoptosis via activating the PI3K/Akt signaling pathway, suggesting the potential therapeutic use of GA to alleviate oxidative stress in humans/animals.

8.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636715

RESUMEN

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Macrófagos , Selenio , Tricotecenos , Animales , Tricotecenos/toxicidad , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Selenio/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo
9.
Mycology ; 15(1): 45-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558842

RESUMEN

Chromoblastomycosis is a chronic granulomatous subcutaneous fungal disease caused mainly by Fonsecaea monophora in southern China. Melanin is an important virulence factor in wild strain (Mel+), and the strains lack of the polyketide synthase gene is a melanin-deficient mutant strain (Mel-). We investigated the effect of melanin in F. monophora on Dectin-1 receptor-mediated immune responses in macrophages. Conidia and tiny hyphae of Mel+ and Mel- were co-cultured with THP-1 macrophages expressing normal or low levels of Dectin-1. Compare the killing rate, phagocytosis rate, and expression levels of the inflammatory cytokines tumour necrosis factor-α, interleukin-1ß, interleukin-6, and nitric oxide in each group. The results showed that the killing rate, phagocytosis rate, and pro-inflammatory factor levels of Mel+ infected macrophages with normal expression of Dectin-1 were lower than those of Mel-. And the knockdown of Dectin-1 inhibited the phagocytic rate, killing rate, and proinflammatory factor expression in macrophages infected with Mel+ and Mel-. And there was no significant difference in the above indexes between Mel+ and Mel- groups in Dectin-1 knockdown macrophages. In summary, the study reveals that melanin of F. monophora inhibits the immune response effect of the host by hindering its binding to Dectin-1 on the surface of macrophage, which may lead to persistent fungal infections.

11.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470090

RESUMEN

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Asunto(s)
Plantas Modificadas Genéticamente , Biología Sintética , Zea mays , Biología Sintética/métodos , Zea mays/genética , Zea mays/metabolismo , Humanos , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Células HEK293 , Xantófilas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animales , Ácidos Nucleicos/genética , Expresión Génica , Vectores Genéticos/genética , Protoplastos/metabolismo
12.
Food Chem X ; 21: 101245, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38426078

RESUMEN

A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.

13.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540959

RESUMEN

Silkie chicken, an important chicken breed with high medicinal and nutritional value, has a long history of being used as a dietary supplement in China. However, the compounds with health-promoting effects in Silkie chickens remain unclear. In the present study, we conducted a comprehensive analysis of metabolic and lipidomic profiles to identify the characteristic bioactive compounds in Silkie chickens, using a common chicken breed as control. The results showed that the levels of 13 metabolites including estradiol, four lipid subclasses including cardiolipin (CL), eight lipid molecules, and three fatty acids including docosahexaenoic acid (C22:6) were significantly increased in Silkie chickens, which have physiological activities such as resisting chronic diseases and improving cognition. These characteristic bioactive compounds have effects on meat quality characteristics, including improving its water-holding capacity and umami taste and increasing the content of aromatic compounds and phenols. The differentially expressed genes (DEGs) between the two chicken breeds revealed the regulatory network for these characteristic bioactive compounds. Fifteen DEGs, including HSD17B1, are involved in the synthesis of characteristic metabolites. Eleven DEGs, including ELOVL2, were involved in the synthesis and transport of characteristic lipids and fatty acids. In summary, we identified characteristic bioactive compounds in Silkie chickens, and analyzed their effects on meat quality characteristics. This study provided important insight into Silkie chicken meat as a functional food.

14.
J Am Chem Soc ; 146(8): 5502-5510, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359445

RESUMEN

Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.


Asunto(s)
Amidas , Aminoácidos , Níquel/química , Péptidos , Carbohidratos/química , Glicopéptidos , Glicoproteínas , Catálisis
15.
iScience ; 27(2): 108919, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318362

RESUMEN

Recent studies have demonstrated the pivotal involvement of endocannabinoids in regulating learning and memory, but the conclusions obtained from different paradigms or contexts are somewhat controversial, and the underlying mechanisms remain largely elusive. Here, we show that JZL195, a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase, can enhance the performance of mice in a contextual fear conditioning task and increase the time spent in open arms in the elevated zero maze (EZM). Although the effect of JZL195 on fear memory could not be inhibited by antagonists of cannabinoid receptors, the effect on the EZM seems to be mediated by CB1R. Simultaneously, hippocampal neurons are hyperactive, and theta oscillation power is significantly increased during the critical period of memory consolidation upon treatment with JZL195. These results suggest the feasibility of targeting the endocannabinoid system for the treatment of various mental disorders.

16.
Pharmacol Ther ; 254: 108593, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301771

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.


Asunto(s)
Berberina , Carcinoma Hepatocelular , Resistencia a la Insulina , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Niño , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/prevención & control , Berberina/farmacología , Berberina/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control
17.
Int J Pharm ; 653: 123867, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38310991

RESUMEN

In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.


Asunto(s)
Impresión Tridimensional , Tecnología Farmacéutica , Humanos , Niño , Tecnología Farmacéutica/métodos , Composición de Medicamentos , Preparaciones Farmacéuticas , Medicina de Precisión , Sistemas de Liberación de Medicamentos
18.
Eur J Med Chem ; 268: 116218, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387331

RESUMEN

Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.


Asunto(s)
Cianatos , Nanopartículas del Metal , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Oro/uso terapéutico , Neoplasias/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/farmacología , Tiorredoxinas
19.
J Am Soc Echocardiogr ; 37(5): 550-561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38199332

RESUMEN

Congenital heart disease is a severe health risk for newborns. Early detection of abnormalities in fetal cardiac structure and function during pregnancy can help patients seek timely diagnostic and therapeutic advice, and early intervention planning can significantly improve fetal survival rates. Echocardiography is one of the most accessible and widely used diagnostic tools in the diagnosis of fetal congenital heart disease. However, traditional fetal echocardiography has limitations due to fetal, maternal, and ultrasound equipment factors and is highly dependent on the skill level of the operator. Artificial intelligence (AI) technology, with its rapid development utilizing advanced computer algorithms, has great potential to empower sonographers in time-saving and accurate diagnosis and to bridge the skill gap in different regions. In recent years, AI-assisted fetal echocardiography has been successfully applied to a wide range of ultrasound diagnoses. This review systematically reviews the applications of AI in the field of fetal echocardiography over the years in terms of image processing, biometrics, and disease diagnosis and provides an outlook for future research.


Asunto(s)
Inteligencia Artificial , Ecocardiografía , Corazón Fetal , Cardiopatías Congénitas , Ultrasonografía Prenatal , Femenino , Humanos , Embarazo , Ecocardiografía/métodos , Ecocardiografía/tendencias , Corazón Fetal/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Ultrasonografía Prenatal/métodos
20.
Adv Sci (Weinh) ; 11(12): e2307773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233152

RESUMEN

An unprecedented enantioselective protonation reaction enabled by photoredox catalytic radical coupling is developed. Under cooperative dicynopyrazine-derived chromophore (DPZ) as a photosensitizer and a chiral phosphoric acid catalyst, and Hantzsch ester as a sacrificial reductant, the transformations between α-substituted enones and cyanoazaarenes or 2-(chloromethyl)azaaren-1-iums can proceed a tandem reduction, radical coupling, and enantioselective protonation process efficiently. Two classes of pharmaceutically important enantioenriched azaarene variants, which contain a synthetically versatile ketone-substituted tertiary carbon stereocenter at the ß- or γ-position of the azaarenes, are synthesized with high yields and ees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...