RESUMEN
Intronic deletions that critically shorten donor-to-branchpoint (D-BP) distance of a precursor mRNA impose biophysical space constraint on assembly of the U1/U2 spliceosomal complex, leading to canonical splicing failure. Here we use a series of ß-globin (HBB) gene constructs with intron 1 deletions to define D-BP lengths that present low/no risk of mis-splicing and lengths which are critically short and likely elicit clinically relevant mis-splicing. We extend our previous observation in EMD intron 5 of 46 nt as the minimal productive D-BP length, demonstrating spliceosome assembly constraint persists at D-BP lengths of 47-56 nt. We exploit the common HBB exon 1 ß-thalassemia variant that strengthens a cryptic donor (NM_000518.5(HBB):c.79G > A) to provide a simple barometer for the earliest signs of space constraint, via cryptic donor activation. For clinical evaluation of intronic deletions, we assert D-BP lengths > 60 nt present low mis-splicing risk while space constraint increases exponentially with D-BP lengths < 55 nt, with critical risk and profound splicing abnormalities with D-BP lengths < 50 nt.
Asunto(s)
Intrones , Globinas beta , Humanos , Globinas beta/genética , Empalme del ARN , Talasemia beta/genética , Talasemia beta/diagnóstico , Sitios de Empalme de ARN , Eliminación de Secuencia , Empalmosomas/genética , Empalmosomas/metabolismoRESUMEN
EMC1 encodes subunit 1 of the endoplasmic reticulum (ER) membrane protein complex (EMC), a transmembrane domain insertase involved in membrane protein biosynthesis. Variants in EMC1 are described as a cause of global developmental delay, hypotonia, cortical visual impairment, and commonly, cerebral atrophy on MRI scan. We report an individual with severe global developmental delay and progressive cerebellar atrophy in whom exome sequencing identified a heterozygous essential splice-site variant in intron-3 of EMC1 (NM_015047.3:c.287-1G>A). Whole genome sequencing (WGS) identified a deep intronic variant in intron-20 of EMC1 (NM_015047.3:c.2588-771C>G) that was poorly predicted by in silico programs to disrupt pre-mRNA splicing. Reverse Transcription-PCR (RT-PCR) revealed stochastic activation of a pseudo-exon associated with the c.2588-771C>G variant and mis-splicing arising from the c.287-1G>A variant. This case highlights the utility of WGS and RNA studies to identify and assess likely pathogenicity of deep intronic variants and expands the genotypic and phenotypic spectrum of EMC1-related disorders.
Asunto(s)
Proteínas de la Membrana , Empalme del ARN , Humanos , Empalme del ARN/genética , Mutación , Intrones/genética , Proteínas de la Membrana/genética , Atrofia/genéticaRESUMEN
Predicting the pathogenicity of acceptor splice-site variants outside the essential AG is challenging, due to high sequence diversity of the extended splice-site region. Critical analysis of 24,445 intronic extended acceptor splice-site variants reported in ClinVar and the Leiden Open Variation Database (LOVD) demonstrates 41.9% of pathogenic variants create an AG dinucleotide between the predicted branchpoint and acceptor (AG-creating variants in the AG exclusion zone), 28.4% result in loss of a pyrimidine at the -3 position, and 15.1% result in loss of one or more pyrimidines in the polypyrimidine tract. Pathogenicity of AG-creating variants was highly influenced by their position. We define a high-risk zone for pathogenicity: > 6 nucleotides downstream of the predicted branchpoint and >5 nucleotides upstream from the acceptor, where 93.1% of pathogenic AG-creating variants arise and where naturally occurring AG dinucleotides are concordantly depleted (5.8% of natural AGs). SpliceAI effectively predicts pathogenicity of AG-creating variants, achieving 95% sensitivity and 69% specificity. We highlight clinical examples showing contrasting mechanisms for mis-splicing arising from AG variants: (1) cryptic acceptor created; (2) splicing silencer created: an introduced AG silences the acceptor, resulting in exon skipping, intron retention, and/or use of an alternative existing cryptic acceptor; and (3) splicing silencer disrupted: loss of a deep intronic AG activates inclusion of a pseudo-exon. In conclusion, we establish AG-creating variants as a common class of pathogenic extended acceptor variant and outline factors conferring critical risk for mis-splicing for AG-creating variants in the AG exclusion zone, between the branchpoint and acceptor.
RESUMEN
AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Glutamina/metabolismo , Neuronas Motoras/patología , Demencia Frontotemporal/genética , Glutamina/genética , Humanos , Intrones/fisiología , Prolina/genética , Prolina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismoRESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with phenotypic and genetic heterogeneity. Approximately 10% of cases are familial, while remaining cases are classified as sporadic. To date, >30 genes and several hundred genetic variants have been implicated in ALS. METHODS: Seven hundred and fifty-seven sporadic ALS cases were recruited from Australian neurology clinics. Detailed clinical data and whole genome sequencing (WGS) data were available from 567 and 616 cases, respectively, of which 426 cases had both datasets available. As part of a comprehensive genetic analysis, 853 genetic variants previously reported as ALS-linked mutations or disease-associated alleles were interrogated in sporadic ALS WGS data. Statistical analyses were performed to identify correlation between clinical variables, and between phenotype and the number of ALS-implicated variants carried by an individual. Relatedness between individuals carrying identical variants was assessed using identity-by-descent analysis. RESULTS: Forty-three ALS-implicated variants from 18 genes, including C9orf72, ATXN2, TARDBP, SOD1, SQSTM1 and SETX, were identified in Australian sporadic ALS cases. One-third of cases carried at least one variant and 6.82% carried two or more variants, implicating a potential oligogenic or polygenic basis of ALS. Relatedness was detected between two sporadic ALS cases carrying a SOD1 p.I114T mutation, and among three cases carrying a SQSTM1 p.K238E mutation. Oligogenic/polygenic sporadic ALS cases showed earlier age of onset than those with no reported variant. CONCLUSION: We confirm phenotypic associations among ALS cases, and highlight the contribution of genetic variation to all forms of ALS.
RESUMEN
OBJECTIVE: Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS: Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS: No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS: Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Proteínas Mitocondriales/genética , Anciano , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Animales , Australia , Western Blotting , Encéfalo/patología , Femenino , Técnica del Anticuerpo Fluorescente , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/patología , Variación Genética/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Corteza Motora/patología , Médula Espinal/patología , Secuenciación del Exoma , Secuenciación Completa del GenomaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of upper and lower motor neurons. ALS exhibits high phenotypic variability including age and site of onset, and disease duration. To uncover epigenetic and transcriptomic factors that may modify an ALS phenotype, we used a cohort of Australian monozygotic twins (n = 3 pairs) and triplets (n = 1 set) that are discordant for ALS and represent sporadic ALS and the two most common types of familial ALS, linked to C9orf72 and SOD1. Illumina Infinium HumanMethylation450K BeadChip, EpiTYPER and RNA-Seq analyses in these ALS-discordant twins/triplets and control twins (n = 2 pairs), implicated genes with consistent longitudinal differential DNA methylation and/or gene expression. Two identified genes, RAD9B and C8orf46, showed significant differential methylation in an extended cohort of >1000 ALS cases and controls. Combined longitudinal methylation-transcription analysis within a single twin set implicated CCNF, DPP6, RAMP3, and CCS, which have been previously associated with ALS. Longitudinal transcriptome data showed an 8-fold enrichment of immune function genes and under-representation of transcription and protein modification genes in ALS. Examination of these changes in a large Australian sporadic ALS cohort suggest a broader role in ALS. Furthermore, we observe that increased methylation age is a signature of ALS in older patients.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Metilación de ADN/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Adulto , Anciano , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/patología , Australia/epidemiología , Proteína C9orf72/genética , Proteínas de Ciclo Celular/genética , Enfermedades en Gemelos , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Trillizos/genética , Gemelos Monocigóticos/genética , Secuenciación del ExomaRESUMEN
C9orf72 hexanucleotide repeat expansions are the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Genetic testing for C9orf72 expansions in patients with ALS and/or FTD and their relatives has become increasingly available since hexanucleotide repeat expansions were first reported in 2011. The repeat number is highly variable and the threshold at which repeat size leads to neurodegeneration remains unknown. We present the case of an ALS patient who underwent genetic testing through our Motor Neurone Disease Clinic. We highlight current limitations to analysing and interpreting C9orf72 expansion test results and describe how this resulted in discordant reports of pathogenicity between testing laboratories that confounded the genetic counselling process. We conclude that patients with ALS or FTD and their at-risk family members, need to be adequately counselled about the limitations of current knowledge to ensure they are making informed decisions about genetic testing for C9orf72. Greater collaboration between clinicians, testing laboratories and researchers is required to ensure risks to patients and their families are minimised.
Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Asesoramiento Genético/normas , Pruebas Genéticas/normas , Adulto , Femenino , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Humanos , LinajeRESUMEN
BACKGROUND: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. OBJECTIVE: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. METHODS: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. RESULTS: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. CONCLUSIONS: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Neuronas Motoras/patología , Polimorfismo de Nucleótido Simple/genética , Médula Espinal/patología , Australia/epidemiología , Proteína C9orf72/genética , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Humanos , MasculinoRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive weakness, paralysis and muscle loss often resulting in patient death within 3-5 years of diagnosis. Recently, we identified disease-linked mutations in the CCNF gene, which encodes the cyclin F protein, in cohorts of patients with familial and sporadic ALS and frontotemporal dementia (FTD) (Williams KL et al 2016 Nat. Commun.7, 11253. (doi:10.1038/ncomms11253)). Cyclin F is a part of a Skp1-Cul-F-box (SCF) E3 ubiquitin-protein ligase complex and is responsible for ubiquitylating proteins for degradation by the proteasome. In this study, we investigated the phosphorylation status of cyclin F and the effect of the serine to glycine substitution at site 621 (S621G) on E3 ligase activity. This specific mutation (S621G) was found in a multi-generational Australian family with ALS/FTD. We identified seven phosphorylation sites on cyclin F, of which five are newly reported including Ser621. These phosphorylation sites were mostly identified within the PEST (proline, glutamic acid, serine and threonine) sequence located at the C-terminus of cyclin F. Additionally, we determined that casein kinase II (CK2) can phosphorylate Ser621 and thereby regulate the E3 ligase activity of the SCF(cyclin F) complex. Furthermore, the S621G mutation in cyclin F prevents phosphorylation by CK2 and confers elevated Lys48-ubiquitylation activity, a hallmark of ALS/FTD pathology. These findings highlight the importance of phosphorylation in regulating the activity of the SCF(cyclin F) E3 ligase complex that can affect downstream processes and may lead to defective motor neuron development, neuron degeneration and ultimately ALS and FTD.
Asunto(s)
Quinasa de la Caseína II/metabolismo , Ciclinas/metabolismo , Complejos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Activación Enzimática , Células HEK293 , Humanos , Lisina , Espectrometría de Masas , Modelos Moleculares , Fosfatidilserinas , Fosforilación , Unión Proteica , UbiquitinaciónRESUMEN
BACKGROUND: The L25 mouse line was generated by random genomic insertion of a lens-specific transgene. Inbreeding of L25 hemizygotes revealed an unanticipated spastic phenotype in the hind limbs. OBJECTIVE: The goals were to characterize the motor phenotype in the L25 mice and to map the transgene insert site within the mouse genome. METHODS: Six pairs of L25+/- mice were repeatedly mated. Beginning at weaning, all progeny were inspected for body weight and motor signs twice weekly until they displayed predefined ethical criteria for termination. The transgene insert site was determined by whole genome sequencing. Western blotting was used to compare the expression levels of beta-IV spectrin protein in the brain. RESULTS: Matings of hemizygous L25+/- × L25+/- mice yielded 20% (29/148) affected weanlings, identified by an abnormal retraction of the hind limbs when lifted by the tail, and a fine tremor. Affected mice were less mobile and grew more slowly than wild-type littermates. All affected mice required termination due to >15% loss of body weight (50% survival age 92 days). At the endpoint, mice showed varying degrees of spastic paresis or spastic paralysis localised to the hind limbs. Motor endplates remained fully innervated. Genome sequencing confirmed that the transgene was inserted in the locus of ßIV spectrin of L25 mice. Western blotting indicated that this random insertion had greatly reduced the expression of ßIV spectrin protein in the affected L25 mice. CONCLUSIONS: The results confirm the importance of ßIV spectrin for maintaining central motor pathway control of the hind limbs, and provide a developmental time course for the phenotype.
Asunto(s)
Espasticidad Muscular/metabolismo , Mutagénesis Insercional , Espectrina/metabolismo , Animales , Peso Corporal/fisiología , Encéfalo/metabolismo , Femenino , Expresión Génica , Miembro Posterior , Masculino , Ratones Transgénicos , Placa Motora/metabolismo , Placa Motora/patología , Espasticidad Muscular/patología , Paresia/metabolismo , Paresia/patología , Fenotipo , Espectrina/genética , TransgenesRESUMEN
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase complex (SCF(Cyclin F)). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCF(Cyclin F) substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ciclinas/genética , Demencia Frontotemporal/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Mapeo Cromosómico , Cromosomas Humanos Par 16/genética , Salud de la Familia , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de AminoácidoRESUMEN
Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Proteínas Serina-Treonina Quinasas/genética , Pueblo Asiatico/genética , Estudios de Cohortes , HumanosRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive degeneration of brain and spinal cord motor neurons. Ubiquitin-proteasome system (UPS) dysfunction and oxidative stress have been implicated in ALS pathogenesis. However, it is unknown whether the defects in these pathways extend to non-neuronal tissues such as fibroblasts. Fibroblasts, unlike neuronal tissue, are readily available and may hold potential for short-term, rapid diagnostic and prognostic purposes. We investigated whether primary skin fibroblasts from ALS patients share, or can be manipulated to develop, functional and pathological abnormalities seen in affected neuronal cells. We inhibited UPS function and induced oxidative stress in the fibroblasts and found that ALS-related cellular changes, such as aggregate formation and ubiquitination of ALS-associated proteins (TDP-43 and ubiquilin 2), can be reproduced in these cells. Higher levels of TDP-43 ubiquitination, as evident by colocalization between TDP-43 and ubiquitin, were found in all six ALS cases compared to controls following extracellular insults. In contrast, colocalization between ubiquilin 2 and ubiquitin was not markedly different between ALS cases and control. A UPS reporter assay revealed UPS abnormalities in patient fibroblasts. Despite the presence of ALS-related cellular changes in the patient fibroblasts, no elevated toxicity was observed. This suggests that aggregate formation and colocalization of ALS-associated proteins may be insufficient alone to confer toxicity in fibroblasts used in the present study. Chronic exposure to ALS-linked stresses and the ALS-linked cellular pathologies may be necessary to breach an unknown threshold that triggers cell death.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Fibroblastos/patología , Fibroblastos/fisiología , Piel/patología , Piel/fisiopatología , Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/cirugía , Proteínas Relacionadas con la Autofagia , Biopsia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Mutación , Estrés Oxidativo/fisiología , Transfección , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMEN
Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Citosol/metabolismo , Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Ratones , Mutación Missense , FosforilaciónRESUMEN
Ubiquilin 2, which is encoded by the UBQLN2 gene, plays a critical role in protein clearance pathways including the ubiquitin-proteasome system and autophagy. Ubiquilin 2 physically associates with ubiquitin ligases and proteasomes to mediate protein degradation. It also plays a role in the regulation of cell signalling and cell cycle progression, and association with cytoskeletal elements. Recent studies have revealed that ubiquilin 2 also plays a pathogenic role in neurodegenerative disease, including amyotrophic lateral sclerosis (ALS), and ALS-frontotemporal dementia (ALS-FTD). Rare UBQLN2 mutations cause a small subset of ALS and ALS-FTD cases. More widespread is the presence of ubiquilin 2 positive inclusions in the affected neurons of some familial and sporadic ALS and ALS-FTD patients. These discoveries have led to the hypothesis that perturbation in protein clearance, mediated by ubiquilin 2, is an important pathogenic mechanism in neurodegeneration.