RESUMEN
BACKGROUND: Hepatic fibrosis, a chronic pathological condition resulting from various forms of persistent liver injury, in the later stage, it can evolve into cirrhosis and even liver cancer. Curcumae Rhizoma (CR), traditionally recognized for its properties in line qi break blood, eliminate accumulation and relieve pain. According to traditional Chinese medicine (TCM) principles, vinegar-processing enhances CR's ability to enter the liver meridian and act on the blood level, potentially augmenting its therapeutic effects on hepatic diseases. Therefore, vinegar-processed Curcumae Rhizoma (VCR) is frequently employed in treating liver fibrosis and related hepatic conditions. However, the underlying mechanisms of vinegar processing in enhancing its therapeutic efficacy remain unclear. METHODS: The anti-liver fibrosis effects of CR and VCR were verified at individual and cellular levels. Subsequently, HPLC-Q-TOFMS and pharmacokinetic analysis were utilized to elucidate the potential bioactive substances underlying the enhanced anti-fibrotic efficacy of VCR. Building upon these findings, network pharmacology and metabolomics were integrated to screen for key effect components and regulatory pathways. Finally, the mechanisms of action were further analyzed and validated at the tissue and cellular levels through Western blotting (WB) and molecular docking studies. RESULTS: Both CR and VCR exhibited therapeutic effects against hepatic fibrosis, with VCR demonstrating enhanced efficacy after vinegar processing. 6 sesquiterpenes including furanodiene and curdione, showed significant alterations in plasma exposure and hepatic distribution post-processing. VCR significantly improved pathological liver conditions, lipid accumulation, and fibrosis severity. Additionally, VCR markedly reduced the expression of α-SMA in the liver and attenuated the elevations in liver function markers such as ALT and AST. Combined network pharmacology, metabolomics, and hepatic tissue WB analysis revealed that the reduced phosphorylation of the PI3K/Akt/mTOR pathway is a critical mechanism in VCR's anti-fibrotic effects. Experiments on LX-2 cells demonstrated that four sesquiterpenes, including furanodiene and curdione, effectively inhibited the proliferation of activated hepatic stellate cells (HSCs). Furanodiene, in particular, promoted apoptosis in activated HSCs by reducing phosphorylation levels of the PI3K/Akt/mTOR pathway proteins, increasing BAX expression, and activating downstream caspase-3 to achieve the effect of anti-liver fibrosis. CONCLUSION: Vinegar-processing significantly increases the plasma exposure and hepatic distribution of components such as furanodiene in VCR, enhancing anti-fibrotic efficacy by downregulating the phosphorylation levels of the PI3K/Akt/mTOR pathway and promoting HSC apoptosis. This study provides a comprehensive explanation of the vinegar-processing mechanism and its role in enhancing the anti-fibrotic effects of VCR, offering insights for its clinical application in liver fibrosis treatment and reference for the mechanistic study of other vinegar-processed herbal medicines.
RESUMEN
This article investigates the tracking control problem of heterogeneous multiagent systems (MASs) with intrinsic nonlinear dynamics in noisy and time-delayed environments. First, a stability criterion for nonlinear stochastic delay systems with multiplicative noise and time-varying delay is proposed by applying the appropriate Lyapunov-Krasovskii functional. Then, based on the proposed stability criterion, sufficient conditions are derived for mean square (m.s.) and almost sure (a.s.) tracking of heterogeneous MASs with intrinsic nonlinear dynamics. Afterward, the above sufficient conditions further degenerate to integrator heterogeneous MASs. In particular, when the time-delay vanishes, the explicit conditions are obtained for the integrator heterogeneous MASs in the form of scalar inequalities, which can intuitively reflect the relationship between noise intensity and control gains. Finally, simulation results validate the effectiveness of the proposed control protocol.
RESUMEN
Introduction: Respiratory pathogens are frequently isolated from airway samples in primary ciliary dyskinesia (PCD) patients. Few studies have investigated associations between these pathogens and lung function, with current management based on evidence from cystic fibrosis. We investigated the association between commonly isolated respiratory pathogens and lung function in PCD patients. Methods: Using a cross-sectional design, we prospectively collected clinical and concurrent microbiology data from 408 participants with probable or confirmed PCD, aged ≥5â years, from 12 countries. We used Global Lung Function Initiative 2012 references to calculate forced expiratory volume in 1â s (FEV1) z-scores. For 351 patients (86%) with complete data, we assessed the association of the four most frequently isolated pathogens with lung function by fitting multilevel linear models with country as random intercept, adjusted for age at diagnosis, age at lung function, use of antibiotic prophylaxis and body mass index z-scores. Results: Individuals with Pseudomonas aeruginosa growth in culture had significantly lower FEV1 z-scores (ß= -0.87, 95% CI -1.40- -0.34), adjusted for presence of Haemophilus influenzae, methicillin-sensitive Staphylococcus aureus and Streptococcus pneumoniae, and for covariates. When stratified by age, associations remained strong for adults but not for children. Results were similar when ciliary defects by transmission electron microscopy were included in the models and when restricting analysis to only confirmed PCD cases. Conclusions: We found that P. aeruginosa was associated with worse lung function in individuals with PCD, particularly adults. These findings suggest that it is prudent to aim for P. aeruginosa eradication in the first instance, and to treat exacerbations promptly in colonised patients.
RESUMEN
BACKGROUND: Viral pneumonia, a pressing global health issue, necessitates innovative therapeutic approaches. Acyclovir, a potent ring-opening antiviral agent with broad-spectrum activity, faces water solubility, oral bioavailability, and drug resistance challenges. The aim of this study was to increase the efficacy of acyclovir through respiratory delivery by encapsulating it within albumin-modified lipid nanoparticles and formulate it as a spray. METHODS: Nanoparticles was synthesized via the reverse evaporation method; its physicochemical characteristics were rigorously evaluated, including particle size, zeta potential, morphology, encapsulation efficiency, drug loading, and release profile. Furthermore, the cytotoxicity of nanoparticles and its therapeutic potential against viral pneumonia were assessed through cellular and animal model experiments. Result s: Nanoparticles exhibited a spherical morphology, with a mean particle size of 97.48 ± 5.36 nm and a zeta potential of 30.28 ± 4.72 mv; they demonstrated high encapsulation efficiency (93.26 ± 3.27%), drug loading (11.36 ± 0.48%), and a sustained release profile of up to 92% under neutral conditions. Notably, nanoparticles showed low cytotoxicity and efficient intracellular delivery of acyclovir. In vitro studies revealed that nanoparticles significantly reduced interleukin-6 levels induced by influenza virus stimulation. In vivo, nanoparticles treatment markedly decreased mortality, attenuated the inflammatory markers interleukin-6 and tumor necrosis factor-α levels, and mitigated inflammatory lung injury in mice with viral pneumonia. CONCLUSIONS: In this study, albumin was modified with polyethylene glycol (PEG) containing cationic lipid nanoparticles (LN) to prepare albumin-modified lipid nanoparticles encapsulating acyclovir (ALN-Acy), which can effectively deliver Acy into tissues and cells, prolong the survival of mice, and reduce lung injury and inflammatory factors. White albumin LN can be used as efficient drug delivery carriers, and the delivery of Acy via albumin LN is expected to be a therapeutic strategy for treating inflammatory diseases.
Asunto(s)
Aciclovir , Albúminas , Antivirales , Lípidos , Nanopartículas , Animales , Aciclovir/administración & dosificación , Aciclovir/química , Aciclovir/farmacocinética , Nanopartículas/química , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacología , Ratones , Lípidos/química , Albúminas/química , Secado por Pulverización , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Tamaño de la Partícula , Humanos , Sistemas de Liberación de Medicamentos/métodos , Composición de Medicamentos/métodos , Portadores de Fármacos/química , LiposomasRESUMEN
Reliable and real-time monitoring of seafood decay is attracting growing interest for food safety and human health, while it is still a great challenge to accurately identify the released triethylamine (TEA) from the complex volatilome. Herein, defect-engineered WO3-x architectures are presented to design advanced TEA sensors for seafood quality assessment. Benefiting from abundant oxygen vacancies, the obtained WO2.91 sensor exhibits remarkable TEA-sensing performance in terms of higher response (1.9 times), faster response time (2.1 times), lower detection limit (3.2 times), and higher TEA/NH3 selectivity (2.8 times) compared with the air-annealed WO2.96 sensor. Furthermore, the definite WO2.91 sensor demonstrates long-term stability and anti-interference in complex gases, enabling the accurate recognition of TEA during halibut decay (0-48 h). Coupled with the random forest algorithm with 70 estimators, the WO2.91 sensor enables accurate prediction of halibut storage with an accuracy of 95%. This work not only provides deep insights into improving gas-sensing performance by defect engineering but also offers a rational solution for reliably assessing seafood quality.
Asunto(s)
Algoritmos , Óxidos , Alimentos Marinos , Tungsteno , Alimentos Marinos/análisis , Tungsteno/química , Óxidos/química , Calidad de los Alimentos , Bosques AleatoriosRESUMEN
Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Senescencia de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
RESUMEN
To investigate vascular endothelium damage in rats exposed to hypoxic and cold and the effect of salidroside in protecting against this damage. A rat isolated aortic ring hypoxia/cold model was established to simulate exposure to hypoxic and cold. The levels of endothelial cell injury markers were measured by ELISA. TEM was performed to observe the ultrastructure of vascular ring endothelial cells. In vitro assays were performed to verify the effect of salidroside on endothelial cells. CCK-8 and flow cytometry were performed to analyze endothelial cell survival and apoptosis, respectively. Ca2+ concentrations were measured by Flow cytometry, and the expressions of NOS/NO pathway-related proteins were measured by WB. Endothelial cell damage, mitochondrial swelling, autophagy, and apoptosis were increased in the hypoxia group and hypoxia/hypothermia group. All of these effects were inhibited by salidroside. Moreover, exposure to cold combined with hypoxia reduced the NO levels, Ca2+ concentrations and NOS/NO pathway-related protein expression in the hypoxia group and hypoxia/hypothermia group. Salidroside treatment reversed these changes. Salidroside protected against endothelial cell injury induced by cold and hypoxia through reduction of Ca2+-CaM-CAMKII-dependent eNOS/NO activation, thereby preventing mitochondrial damage, reducing ROS levels, and inhibiting apoptosis.
RESUMEN
INTRODUCTION: Magnoliae officinalis cortex (MOC) has been used for thousands of years as a traditional Chinese herb. In Chinese Pharmacopoeia (2020 edition), it has two types of decoction pieces, raw Magnoliae officinalis cortex (RMOC) and ginger juice processed Magnoliae officinalis cortex (GMOC). The quality difference between RMOC and GMOC has not been explored systemically. OBJECTIVE: This study aimed to discover the quality difference between RMOC and GMOC, and clarify the effect of ginger juice during processing comprehensively. METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were applied to study the non-volatile and volatile components of RMOC and GMOC; electronic eye was applied for color measurement. Meanwhile, water processed Magnoliae officinalis cortex (WMOC) was studied as the blank sample. RESULTS: There were 155 non-volatile and 72 volatile substances identified. Between RMOC and GMOC, 29 distinctive non-volatile and 34 distinctive volatile compounds were detected, among which 23 new compounds appeared and five compounds disappeared due to the addition of ginger juice during processing. The intensities of 12 common non-volatile compounds and the relative percentage contents of four common volatile compounds showed significant differences between RMOC and GMOC. In color measurement of RMOC, GMOC, and WMOC, 14 common compounds with significant differences were discovered related to their color values, and their mathematical prediction functions were built. CONCLUSION: There were significant differences between RMOC and GMOC; the processing mechanism of GMOC would be carried out based on the differential compounds in further investigation.
RESUMEN
BACKGROUND AND OBJECTIVE: The measurement of portal venous pressure (PVP) has been extensively studied, primarily through indirect methods. However, the potential of ultrasound-guided percutaneous transhepatic PVP measurement as a direct method has been largely unexplored. This study aimed to investigate the accuracy, safety, and feasibility of this approach. METHODS: In vitro, the experiment aimed to select a needle that could accurately transmit pressure, had a small inner diameter and was suitable for liver puncture, and performed on 20 healthy New Zealand white rabbits. An ultrasound-guided percutaneous transhepatic portal vein puncture was undertaken to measure PVP. Additionally, free hepatic venous pressure (FHVP) and wedged hepatic venous pressure (WHVP) were measured under digital subtraction angiography (DSA). The correlation between the two methods was assessed. Enroll study participants from October 18, 2023 to November 11, 2023 with written informed consent. Five patients were measured the PVP under ultrasound guidance before surgery to determine the feasibility of this measurement method. RESULTS: There was no significant difference in the results obtained using 9 different types of needles (P > 0.05). This demonstrated a great repeatability (P < 0.05). The 22G chiba needle with small inner diameter, allowing for accurate pressure transmission and suitable for liver puncture, was utilized for percutaneous transhepatic PVP measurement. There were positive correlations between PVP and HVPG (r = 0.881), PVP and WHVP (r = 0.709), HVPG and WHVP (r = 0.729), IVCP and FHVP (r = 0.572). The PVP was accurately and safely measured in 5 patients with segmental hepatectomy. No complications could be identified during postoperative ultrasound. CONCLUSION: Percutaneous transhepatic portal venous puncture under ultrasound guidance is accurate, safe and feasible to measure portal venous pressure. CLINICAL TRIAL REGISTRATION NUMBER: This study has been registered in the Chinese Clinical Trial Registry with registration number ChiCTR2300076751.
Asunto(s)
Estudios de Factibilidad , Presión Portal , Vena Porta , Animales , Conejos , Humanos , Masculino , Femenino , Vena Porta/diagnóstico por imagen , Persona de Mediana Edad , Ultrasonografía Intervencional/métodos , Adulto , Hígado/diagnóstico por imagen , Hígado/cirugía , Hígado/irrigación sanguínea , Punciones/métodos , Ultrasonografía/métodos , Anciano , Angiografía de Substracción Digital/métodos , Determinación de la Presión Sanguínea/métodosRESUMEN
To evaluate the effects of varying proportions of yak meat in feed on the growth of rats and provide a theoretical basis for selecting the optimal feed proportion suitable for rats. This study was designed as a one-variable experiment. Fifty male rats were divided into five groups. The ratios of yak meat to basal feed of rats in four dietary treatment groups were 2:8, 4:6, 6:4, and 8:2, respectively, while those in the control group were only provided a basal diet. In the feeding experiment, the body weights of the rats were recorded on Day 0 and subsequently in the first, second, third, and fourth weeks, along with quantities of feed intake. The body and tail lengths, as well as the waist circumference of the rats, were measured, and blood samples were collected in the fourth week for routine blood and biochemistry investigations. The rats in the 4:6 feed group had the best body condition. They had normal body and tail lengths, smaller waist circumferences, good posture, and were in better overall health than rats in the other groups. The results indicate that the 4:6 diet was optimal for enhancing rats' growth performance compared to the other diets.
RESUMEN
Chemiresistive NH3/NO2 sensors are attracting considerable attention for use in air-conditioning systems. However, the existing sensors suffer from cross-sensitivity, detection limit, and power consumption, owing to the inadequate charge-transfer ability of gas-sensing materials. Herein, we develop a flexible NH3/NO2 sensor based on graphitic carbon nitride/polypyrrole decorated alginate paper (AP@g-CN/PPy). The flexible sensor can work at room temperature and exhibits a positive response of 23-246% and a negative response of 37-262% toward 0.1-5 ppm of NH3 and NO2, which is â¼4.5 times and â¼7.0 times higher than a pristine PPy sensor. Moreover, the sensor exhibits flexibility, reproducibility, long-term stability, anti-interference, and high resilience to humidity, indicating its promising potential in real applications. Using the 9 feature parameters extracted from the transient response, a matched deep learning model was developed to achieve qualitative recognition of different types of gases with distinguished decision boundaries. This work not only provides an alternative gas-sensing material for dual NH3/NO2 sensing but also establishes an intelligent strategy to identify hazardous gases under an interfering atmosphere.
RESUMEN
Many biological processes generally require long-term visualization tools for time-scale dynamic changes of the plasma membrane, but there is still a lack of design rules for such imaging tools based on small-molecule fluorescent probes. Herein, we revealed the key regulatory roles of charge number and species of fluorescent dyes in the anchoring ability of the plasma membrane and found that the introduction of multi-charged units and appropriate charge species is often required for fluorescent dyes with strong plasma membrane anchoring ability by systematically investigating the structure-function relationship of cyanostyrylpyridium (CSP) dyes with different charge numbers and species and their imaging performance for the plasma membrane. The CSP-DBO dye constructed exhibits strong plasma membrane anchoring ability in staining the plasma membrane of cells, in addition to many other advantages such as excellent biocompatibility and general universality of cell types. Such a fluorescent anchor has been successfully used to monitor chemically induced plasma membrane damage and dynamically track various cellular biological events such as cell fusion and cytokinesis over a long period of time by continuously monitoring the dynamic morphological changes of the plasma membrane, providing a valuable precise visualization tool to study the physiological response to chemical stimuli and reveal the structural morphological changes and functions of the plasma membrane during these important biological events from a dynamic perspective. Furthermore, CSP-DBO exhibits excellent biocompatibility and imaging capability in vivo such as labelling the plasma membrane in vivo and monitoring the metabolic process of lipofuscin as an aging indicator.
RESUMEN
Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of ß-hydroxy ß-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de Plantas , Ubiquitina-Proteína Ligasas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Retículo Endoplásmico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Animales , Regulación de la Expresión Génica de las Plantas , Estrés del Retículo Endoplásmico , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Respuesta de Proteína DesplegadaRESUMEN
Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.
Asunto(s)
Citocininas , Transducción de Señal , Citocininas/metabolismo , Transporte Biológico , Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismoRESUMEN
INTRODUCTION: Fructus Gardeniae (ZZ), a traditional Chinese herb, has been used in treating patients with jaundice, inflammation, etc. When mixed with ginger juice and stir-baked, ginger juice-processed Fructus Gardeniae (JZZ) is produced, and the chemical compositions in ZZ would be changed by adding the ginger juice. OBJECTIVE: To illuminate the differential components between ZZ and JZZ. METHODS: HPLC, UHPLC-Q-TOF-MS, and Heracles NEO ultra-fast gas phase electronic nose were applied to identify the differential components between ZZ and JZZ. RESULTS: HPLC fingerprints of ZZ and JZZ were established, and 24 common peaks were found. The content determination results showed that the contents of shanzhiside, geniposidic acid, genipin-1-ß-D-gentiobioside and geniposide increased, while the contents of crocin I and crocin II decreased in JZZ. By UHPLC-Q-TOF-MS, twenty-six possible common components were inferred, among which 11 components were different. In further investigation, eight components were identified as the possible distinctive non-volatile compounds between ZZ and JZZ. By Heracles NEO ultra-fast gas phase electronic nose, four substances were inferred as the possible distinctive volatile compounds in JZZ. CONCLUSION: Shanzhiside, caffeic acid, genipin-1-ß-D-gentiobioside, geniposide, rutin, crocin I, crocin II, and 4-Sinapoyl-5-caffeoylquinic acid were identified as the possible differential non-volatile components between ZZ and JZZ. Aniline, 3-methyl-3-sulfanylbutanol-1-ol, E-3-octen-2-one, and decyl propaonate were inferred as the possible distinctive volatile compounds in JZZ. This experiment explored a simple approach with objective and stable results, which would provide new ideas for studying decoction pieces with similar morphological appearance, especially those with different odors.
RESUMEN
Long-term visualization of changes in plasma membrane dynamics during important physiological processes can provide intuitive and reliable information in a 4D mode. However, molecular tools that can visualize plasma membranes over extended periods are lacking due to the absence of effective design rules that can specifically track plasma membrane fluorescent dye molecules over time. Using plant plasma membranes as a model, we systematically investigated the effects of different alkyl chain lengths of FMR dye molecules on their performance in imaging plasma membranes. Our findings indicate that alkyl chain length can effectively regulate the permeability of dye molecules across plasma membranes. The study confirms that introducing medium-length alkyl chains improves the ability of dye molecules to target and anchor to plasma membranes, allowing for long-term imaging of plasma membranes. This provides useful design rules for creating dye molecules that enable long-term visualization of plasma membranes. Using the amphiphilic amino-styryl-pyridine fluorescent skeleton, we discovered that the inclusion of short alkyl chains facilitated rapid crossing of the plasma membrane by the dye molecules, resulting in staining of the cell nucleus and indicating improved cell permeability. Conversely, the inclusion of long alkyl chains hindered the crossing of the cell wall by the dye molecules, preventing staining of the cell membrane and demonstrating membrane impermeability to plant cells. The FMR dyes with medium-length alkyl chains rapidly crossed the cell wall, uniformly stained the cell membrane, and anchored to it for a long period without being transmembrane. This allowed for visualization and tracking of the morphological dynamics of the cell plasma membrane during water loss in a 4D mode. This suggests that the introduction of medium-length alkyl chains into amphiphilic fluorescent dyes can transform them from membrane-permeable fluorescent dyes to membrane-staining fluorescent dyes suitable for long-term imaging of the plasma membrane. In addition, we have successfully converted a membrane-impermeable fluorescent dye molecule into a membrane-staining fluorescent dye by introducing medium-length alkyl chains into the molecule. This molecular engineering of dye molecules with alkyl chains to regulate cell permeability provides a simple and effective design rule for long-term visualization of the plasma membrane, and a convenient and feasible means of chemical modification for efficient transmembrane transport of small molecule drugs.
Asunto(s)
Permeabilidad de la Membrana Celular , Membrana Celular , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Membrana Celular/metabolismo , Membrana Celular/química , Arabidopsis/química , Arabidopsis/metabolismoRESUMEN
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lactonas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Salicílico/metabolismo , Salicilatos/metabolismo , Transducción de Señal , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genéticaRESUMEN
Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.