Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5542, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956040

RESUMEN

Efficiently fabricating a cavity that can achieve strong interactions between terahertz waves and matter would allow researchers to exploit the intrinsic properties due to the long wavelength in the terahertz waveband. Here we show a terahertz detector embedded in a Tamm cavity with a record Q value of 1017 and a bandwidth of only 469 MHz for direct detection. The Tamm-cavity detector is formed by embedding a substrate with an Nb5N6 microbolometer detector between an Si/air distributed Bragg reflector (DBR) and a metal reflector. The resonant frequency can be controlled by adjusting the thickness of the substrate layer. The detector and DBR are fabricated separately, and a large pixel-array detector can be realized by a very simple assembly process. This versatile cavity structure can be used as a platform for preparing high-performance terahertz devices and opening up the study of the strong interactions between terahertz waves and matter.

2.
Light Sci Appl ; 13(1): 25, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253520

RESUMEN

Classical and quantum space-to-ground communications necessitate highly sensitive receivers capable of extracting information from modulated photons to extend the communication distance from near-earth orbits to deep space explorations. To achieve gigabit data rates while mitigating strong background noise photons and beam drift in a highly attenuated free-space channel, a comprehensive design of a multi-functional detector is indispensable. In this study, we present an innovative compact multi-pixel superconducting nanowire single-photon detector array that integrates near-unity detection efficiency (91.6%), high photon counting rate (1.61 Gcps), large dynamic range for resolving different photon numbers (1-24), and four-quadrant position sensing function all within one device. Furthermore, we have constructed a communication testbed to validate the advantages offered by such an architecture. Through 8-PPM (pulse position modulation) format communication experiments, we have achieved an impressive maximum data rate of 1.5 Gbps, demonstrating sensitivities surpassing previous benchmarks at respective speeds. By incorporating photon number information into error correction codes, the receiver can tolerate maximum background noise levels equivalent to 0.8 photons/slot at a data rate of 120 Mbps-showcasing a great potential for daylight operation scenarios. Additionally, preliminary beam tracking tests were conducted through open-loop scanning techniques, which revealed clear quantitative dependence indicating sensitivity variations based on beam location. Based on the device characterizations and communication results, we anticipate that this device architecture, along with its corresponding signal processing and coding techniques, will be applicable in future space-to-ground communication tasks.

3.
Opt Express ; 31(14): 23579-23588, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475438

RESUMEN

Scaling up superconducting nanowire single-photon detectors (SNSPDs) into a large array for imaging applications is the current pursuit. Although various readout architectures have been proposed, they cannot resolve multiple-photon detections (MPDs) currently, which limits the operation of the SNSPD arrays at high photon flux. In this study, we focused on the readout ambiguity of a superconducting nanowire single-photon imager applying time-of-flight multiplexing readout. The results showed that image distortion depended on both the incident photon flux and the imaging object. By extracting multiple-photon detections on idle pixels, which were virtual because of the incorrect mapping from the ambiguous readout, a correction method was proposed. An improvement factor of 1.3~9.3 at a photon flux of µ = 5 photon/pulse was obtained, which indicated that joint development of the pixel design and restoration algorithm could compensate for the readout ambiguity and increase the dynamic range.

4.
Opt Lett ; 47(14): 3523-3526, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838719

RESUMEN

A superconducting nanowire single-photon imager (SNSPI) uses a time-multiplexing method to reduce the readout complexity. However, due to the serial connection, the nanowire should be uniform so that a common bias can set all segments of the nanowire to their maximum detection efficiency, which becomes more challenging as the scalability (i.e., the length of the nanowire) increases. Here, we have developed a 64-pixel SNSPI based on amorphous Mo80Si20 film, which yielded a uniform nanowire and slow transmission line. Adjacent detectors were separated by delay lines, giving an imaging field of 270 µm × 240 µm. Benefiting from the high kinetic inductance of Mo80Si20 films, the delay line gave a phase velocity as low as 4.6 µm/ps. The positions of all pixels can be read out with a negligible electrical cross talk of 0.02% by using cryogenic amplifiers. The timing jitter was 100.8 ps. Saturated internal quantum efficiency was observed at a wavelength of 1550 nm. These results demonstrate that amorphous film is a promising material for achieving SNSPIs with large scalability and high efficiency.

5.
Nano Lett ; 20(5): 3553-3559, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32286838

RESUMEN

Many classic and quantum devices need to operate at cryogenic temperatures, demanding advanced cryogenic digital electronics for processing the input and output signals on a chip to extend their scalability and performance. Here, we report a superconducting binary encoder with ultralow power dissipation and ultracompact size. We introduce a multigate superconducting nanowire cryotron (nTron) that functions as an 8-input OR gate within a footprint of approximately 0.5 µm2. Four cryotrons compose a 4-bit encoder that has a bias margin of 18.9%, an operation speed greater than 250 MHz, an average switching jitter of 75 ps, and a power dissipation of less than 1 µW. We apply this encoder to read out a superconducting-nanowire single-photon detector array whose pixel location is digitized into a 4-bit binary address. The small size of the nanowire combined with the low power dissipation makes nTrons promising for future monolithic integration.

6.
Sci Rep ; 9(1): 16345, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705023

RESUMEN

Scalable superconducting nanowire single photon detector (SNSPDs) arrays require cryogenic digital circuits for multiplexing the output detection pulses. Among existing superconducting digital devices, superconducting nanowire cryotron (nTron) is a three-terminal device with an ultra-compact size, which is promising for large scale monolithic integration. In this report, in order to evaluate the potential and possibility of using nTrons for reading and digitizing SNSPD signals, we characterized the grey zone, speed, timing jitter and power dissipation of a proper designed nTron. With a DC bias on the gate, the nTron can be triggered by a few µA high and nanoseconds wide input signal, showing the nTron was capable of reading an SNSPD pulse at the same signal level. The timing jitter depended on the input signal level. For a 20 µA high and 5 ns wide input pulse, the timing jitter was 33.3 ps, while a typical SNSPD's jitter was around 50 ps. With removing the serial inductors and operating it in an AC bias mode. The nTron was demonstrated to be operated at a clock frequency of 615.4 MHz, which was faster than the maximum counting rate of a typical SNSPD. In additional, with a 50 Ω bias resistor and biased at 17.6 µA, the nTron had a total power dissipation of 19.7 nW. Although RSFQ circuits are faster than nTrons, for reading SNSPD or other detector arrays that demands less operation speed, our results suggest a digital circuit made from nTrons could be another promising alternative.

7.
Opt Express ; 26(20): 25921-25933, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469686

RESUMEN

Quantum key distribution (QKD) offers information-theoretic security verified by quantum mechanics to share keys between legitimate users. Most of the existing QKD systems employ active decoy states based on weak coherent sources (WCS). Meanwhile, parametric down-conversion (PDC) sources are seldom used due to several of their shortcomings. In the present work, to show the superiority of PDC sources, we have accomplished a proof-of-principle demonstration of a PDC source-based QKD with over 40 dB based on the one-way BB84 protocol. In this QKD system, a novel passive decoy-state scheme-secure to coherent attacks-is proposed, using several built-in decoy states for parameter estimation. This not only avoids intensity modulating errors, but also diminishes all possible information leakage from the intensity modulating process. The experimental results show a significantly enhanced performance compared with existing PDC source-based QKD systems. In addition, it exhibits some superiority even over active decoy-state QKD systems based on WCS.

8.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 45(5): 313-7, 2010 May.
Artículo en Chino | MEDLINE | ID: mdl-20654251

RESUMEN

OBJECTIVES: To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). METHODS: Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. RESULTS: The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (P<0.05). The results of SEM showed that with treatment of Al2O3 or NbN, alone, pre-cracks were found in the interface of Ti-porcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. CONCLUSIONS: Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.


Asunto(s)
Recubrimiento Dental Adhesivo , Porcelana Dental/química , Niobio/química , Titanio/química , Análisis del Estrés Dental , Campos Magnéticos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Distribución Aleatoria , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...