Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 401: 110008, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967671

RESUMEN

BACKGROUND: Decoding emotions from brain maps is a challenging task. Convolutional Neural Network (CNN) is commonly used for EEG feature map. However, due to its local bias, CNN is unable to efficiently utilize the global spatial information of EEG signals which limits the accuracy of emotion recognition. NEW METHODS: We design the Dual-scal EEG-Mixer(DSE-Mixer) model for EEG feature map processing. Its brain region mixer layer and electrode mixer layer are designed to fuse EEG information at different spatial scales. For each mixer layer, the structure of alternating mixing of rows and columns of the input table enables cross-regional and cross-Mchannel communication of EEG information. In addition, a channel attention mechanism is introduced to adaptively learn the importance of each channel. RESULTS: On the DEAP dataset, the DSE-Mixer model achieved a binary classification accuracy of 95.19% for arousal and 95.22% for valence. For the four-class classification across valence and arousal, the accuracies were HVHA: 92.12%, HVLA: 89.77%, LVLA: 93.35%, and LVHA: 92.63%. On the SEED dataset, the average recognition accuracy for the three emotions (positive, negative, and neutral) is 93.69%. COMPARISON WITH EXISTING METHODS: In the emotion recognition research based on the DEAP and SEED datasets, DSE-Mixer achieved a high ranking performance. Compared to the two commonly used model in computer vision field, CNN and Vision Transformer(VIT), DSE-Mixer achieved significantly higher classification accuracy while requiring much less computational complexity. CONCLUSIONS: DSE-Mixer provides a novel brain map processing model with a small size, demonstrating outstanding performance in emotion recognition.


Asunto(s)
Emociones , Reconocimiento en Psicología , Nivel de Alerta , Redes Neurales de la Computación , Electroencefalografía
2.
Sensors (Basel) ; 19(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696056

RESUMEN

The microtremor survey method (MSM) has the potential to be an important geophysical method for identifying the strata velocity structure and detecting the buried fault structures. However, the existing microtremor exploration equipment has been unable to satisfy the requirements of the MSM, which suffers from low data accuracy, long measurement time, and blind acquisition. In this study, we combined a 2 Hz moving coil geophone with advanced acquisition systems to develop a new integrated energy-efficient wireless sensor node for microtremor exploration. A high-precision AD chip and noise matching technology are used to develop a low-noise design for the sensor node. Dynamic frequency selection technology (DFS) and dynamic power management technology (DPM) are used to design an energy-efficient mode. The data quality monitoring system solves the closed technical flaws between the acquisition systems and the control center via 4G wireless monitoring technologies. According to the results of a series of in situ tests and field measurements, the noise level of the system was 0.7 µV@500 Hz with 0 dB attenuation and 220 mW power consumption of the system in the autonomous data acquisition mode. Therefore, it provides substantial support for the effective data acquisition over long measurement durations in microtremor exploration processes. The applicability of the system is evaluated using field data, according to which the integrated energy-efficient wireless sensor node is convenient and effective for MSM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...