RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver diseases (CLD) are liver disorders resulting from abnormal bile formation, secretion, and excretion from various causes. Due to the lack of suitable and safe medications, liver transplantation is the ultimate treatment for CLD patients. Isoastragaloside I (IAS I) is one of the main saponin found in Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge, which has been demonstrated to obviously alleviate CLD. Nevertheless, the IAS I's specific anti-CLD mechanism remains undecipherable. AIM OF THE STUDY: This study's purpose was to elucidate the protective consequence of IAS I on 0.1% 3, 5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) diet-induced CLD mice, and to reveal its potential mechanism. MATERIALS AND METHODS: In this study, mice with CLD that had been fed a 0.1% DDC diet were distributed two doses of IAS I (20 mg/kg, 50 mg/kg). The effects of IAS I on CLD models were investigated by assessing blood biochemistry, liver histology, and Hyp concentrations. We investigated markers of liver fibrosis and ductular reaction using immunohistochemistry, Western blot, and qRT-PCR. Liver inflammation indicators, arachidonic acid (ARA), and ω-3 fatty acid (FA) metabolites were also analyzed. Quantitative determination of 39 bile acids (BAs) in different organs employing UHPLC-Q-Exactive Orbitrap HRMS technology. Additionally, the H&E and Western blot analysis were used to evaluate differences in intestinal barrier function in DDC-induced mice before and after administering IAS I. RESULTS: After treatment with IAS I, serum biochemical indicators and liver hydroxyproline (Hyp) increased in a dose-dependent manner in CLD mice. The IAS I group showed significant improvement in indicators of liver fibrosis and ductular response, including as α-smooth muscle actin (α-SMA) and cytokeratin 19 (CK19), and transforming growth factor-ß (TGF-ß)/Smads signaling pathway. And inflammatory factors: F4/80, tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), ARA and ω-3 FA metabolites showed significant improvement following IAS I treatment. Moreover, IAS I significantly ameliorated liver tau-BAs levels, particularly TCA, THCA, THDCA, TCDCA, and TDCA contents, which were associated with enhanced expression of hepatic farnesoid X receptor (FXR), small heterodimer partner (SHP), cholesterol 7α-hydroxylase (Cyp7a1), and bile-salt export pump (BSEP). Furthermore, IAS I significantly improved pathological changes and protein expression related to intestinal barrier function, including zonula occludens protein 1 (ZO-1), Muc2, and Occludin. CONCLUSIONS: IAS I alleviated cholestatic liver injury, relieved inflammation, improved the altered tau-BAs metabolism and restored intestinal barrier function to protect against DDC-induced cholestatic liver diseases.
Asunto(s)
Ácidos y Sales Biliares , Colestasis , Saponinas , Animales , Ácidos y Sales Biliares/metabolismo , Masculino , Ratones , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Colestasis/patología , Saponinas/farmacología , Saponinas/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Hepatopatías/patología , Hepatopatías/prevención & control , Modelos Animales de Enfermedad , Medicamentos Herbarios ChinosRESUMEN
Total astragalus saponins (TAS) are the main active components of astragali radix, and have potent anti-hepatic fibrosis effect. However, the therapeutic efficacy of TAS and their potential mechanisms in the treatment of primary sclerosing cholangitis (PSC) remain unclear. In this study, two mouse models of PSC, including 3,5-Diethoxycarbonyl-1,4-Dihydro-2,4,6-Collidine (DDC)-induced PSC and Mdr2-/- spontaneous PSC, and the Tgr5-/- mice were used to investigate the therapeutic effect and mechanisms of TAS. Treatment with TAS, particularly with a dose of 56 mg/kg, significantly ameliorated the PSC-related liver injury, cholestasis, collagen deposition, ductular reaction (DR), and fibrosis in the DDC-induced and Mdr2-/-spontaneous PSC mice. Furthermore, treatment with TAS significantly mitigated the PSC-related inflammatory responses in vivo and HIBEpiC cells by inhibiting the expression of TNF-α, IL-6, and IL-1ß. Mechanistically, treatment with TAS rescued the PSC-decreased hepatic TGR5 expression to attenuate the NF-κB p65 phosphorylation. Notably, the therapeutic efficacy of TAS on PSC in DDC-induced mice was abrogated in Tgr5-/- mice, suggesting the anti-PSC effect of TAS may depend on enhancing TGR5 expression. In conclusion, TAS ameliorated DR, inflammation and liver fibrosis in both models of PSC mice by rescuing TGR5 expression. Our findings may aid in the design of new therapeutic strategies for the treatment of PSC.
Asunto(s)
Planta del Astrágalo , Colangitis Esclerosante , Modelos Animales de Enfermedad , Receptores Acoplados a Proteínas G , Saponinas , Regulación hacia Arriba , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Saponinas/farmacología , Colangitis Esclerosante/tratamiento farmacológico , Planta del Astrágalo/química , Regulación hacia Arriba/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Medicamentos Herbarios Chinos/farmacología , Astragalus propinquus/químicaRESUMEN
Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked ß-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked ß-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-ß/Smads signaling pathway, alleviating liver inflammation (IL-1ß, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.
Asunto(s)
Fructanos , Inulina , Humanos , Fructanos/farmacología , Fructanos/uso terapéutico , Fructanos/química , Inulina/farmacología , Inulina/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Polisacáridos , GlucosaRESUMEN
Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3',4'-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF via inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.
RESUMEN
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by inflammation and hepatic steatosis that may coincide with fibrotic activity. To date, no pharmacological agents have been approved for NASH treatment. Here, a homogeneous (1,3),(1,6)-ß-D-glucan (PUP-W-1, Mw: 41.07 kDa) was successfully purified from Polyporus umbellatus (Pers.) Fries sclerotia and characterized. The analysis showed that the PUP-W-1 backbone consisted of a repeating chain of eight â3)-ß-D-Glcp-(1 â units, with branched chains of four ß-D-Glcp residues, joined by repeating 1,6-linkage units at the O-6 position of the backbone. The pharmacological effects of PUP-W-1 treatment in the context of NASH pathogenesis were explored using a methionine choline-deficient (MCD) diet-induced murine steatohepatitis model. The MCD model mice exhibited pronounced steatohepatitis, inflammatory activity, steatosis, stellate cell activation, and mild fibrotic activity. Treatment of the mice for three weeks with PUP-W-1 prevented the development of NASH due to the suppression of inflammation, lipid accumulation, and fibrosis. As suggested by these findings, PUP-W-1 may hold promise as a natural drug candidate or precursor for the treatment of NASH.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Polyporus , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Glucanos/farmacología , Polyporus/química , Dieta , Colina/análisis , Metionina/análisis , Inflamación/patología , Ratones Endogámicos C57BL , HígadoRESUMEN
Backgroud and aims: Ductular reaction (DR) is a common pathological change and thought to have a key role in the pathogenesis and progression of liver fibrosis. Our previous study reported Gypenosides (GPs) ameliorated liver fibrosis, however, the anti-fibrotic mechanisms of GPs are still unclear. Methods: Liver fibrosis was induced in rats by carbon tetrachloride combining with 2-acerylaminofluorene (CCl4/2-AAF), and Mdr2 knockout (Mdr2 -/-) mice to evaluate the anti-fibrotic role of GPs. In vitro, WB-F344 cells, a hepatic progenitor cells (HPCs) line, with or without Gli1 overexpressing lentiviral vectors, were induced by sodium butyrate (SB) to validate the mechanism of GPs and NPLC0393, the main ingredient of GPs. Results: Both in CCl4/2-AAF-treated rats and Mdr2 -/- mice, GPs obviously reduced the deposition of collagen and hydroxyproline content, inhibited the activation of hepatic stellate cells and inflammatory cell infiltration. Notably, GPs reduced the expressions of Epcam, CK19, CK7, Dhh, Smo, Ptch2, Gli1 and Gli2. Furthermore, CK19+ cells co-expressed Gli1, while the number of CK19+/Gli1+ cells was decreased by GPs. In vitro, GPs and NPLC0393 inhibited the differentiation of WB-F344 cells toward a biliary phenotype. Mechanistically, GPs and NPLC0393 protected against DR by inhibiting hedgehog signaling, which was supported by the results that DR, triggered directly by Gli1 overexpressing lentiviral vector was blocked by administration with GPs or NPLC0393. Conclusion: GPs attenuated DR and liver fibrosis by inhibiting hedgehog signaling, which provided more evidences and a novel mechanism of anti-fibrotic effect of GPs.
RESUMEN
Cholestatic liver disease (CLD) is a chronic liver disease characterized by ductular reaction, inflammation and fibrosis. As there are no effective chemical or biological drugs now, majority of CLD patients eventually require liver transplantation. Astragali radix (AR) is commonly used in the clinical treatment of cholestatic liver disease and its related liver fibrosis in traditional Chinese medicine, however its specific active constituents are not clear. Total astragalus saponins (ASTs) were considered to be the main active components of AR. The aim of this study is to investigate the improvement effects of the total astragalus saponins (ASTs) and its main constituents in cholestatic liver disease. The ASTs from AR was prepared by macroporous resin, the content of saponins was measured at 60.19 ± 1.68%. The ameliorative effects of ASTs (14, 28, 56 mg/kg) were evaluated by 3, 5-Diethoxycarbonyl-1, 4-dihydrocollidine (DDC)-induced CLD mouse model. The contents of hydroxyproline (Hyp), the mRNA and protein expression of cytokeratin 19 (CK19) and α-smooth muscle actin (α-SMA) in liver tissue were dose-dependently improved after treatment for ASTs. 45 astragalus saponins were identified in ASTs by UHPLC-Q-Exactive Orbitrap HRMS, including astragaloside I, astragaloside II, astragaloside III, astragaloside IV, isoastragaloside I, isoastragaloside II, cycloastragenol, etc. And, it was found that ductular reaction in sodium butyrate-induced WB-F344 cell model were obviously inhibited by these main constituents. Finally, the improvement effects of astragaloside I, astragaloside II, astragaloside IV and cycloastragenol (50 mg/kg) were evaluated in DDC-induced CLD mice model. The results showed that astragaloside I and cycloastragenol significantly improved mRNA and protein expression of CK19 and α-SMA in liver tissue. It suggested that astragaloside I and cycloastragenol could alleviate ductular reaction and liver fibrosis. In summary, this study revealed that ASTs could significantly inhibit ductular reaction and liver fibrosis, and astragaloside I and cycloastragenol were the key substances of ASTs for treating cholestatic liver disease.
RESUMEN
Liver fibrosis is a common pathological process of all chronic liver diseases. Hepatic stellate cells (HSCs) play a central role in the development of liver fibrosis. Cyclin-dependent kinase 9 (CDK9) is a cell cycle kinase that regulates mRNA transcription and elongation. A CDK9 inhibitor SNS-032 has been reported to have good effects in anti-tumor. However, the role of SNS-032 in the development of liver fibrosis is unclear. In this study, SNS-032 was found to alleviate hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in carbon tetrachloride-induced model mice. In vitro, SNS-032 inhibited the activation and proliferation of active HSCs and induced the apoptosis of active HSCs by downregulating the expression of CDK9 and its downstream signal transductors, such phosphorylated RNA polymerase II and Bcl-2. CDK9 short hairpin RNA was transfected into active HSCs to further elucidate the mechanism of the above effects. Similar results were observed in active HSCs after CDK9 knockdown. In active HSCs with CDK9 knockdown, the expression levels of CDK9, phosphorylated RNA polymerase II, XIAP, Bcl-2, Mcl-1, and É-SMA significantly decreased, whereas those of cleaved-PARP1 and Bax decreased prominently. These results indicated that SNS-032 is a potential drug and CDK9 might be a new prospective target for the treatment of liver fibrosis.
RESUMEN
BACKGROUND: Amygdalin (Amy) is a cyanoside and is one of the chief active ingredients in Persicae Semen, Armeniacae Semen Amarum, and Pruni Semen. Amy has extensive and remarkable pharmacological activities, including against anti-hepatic fibrosis. However, the pharmacokinetic and anti-liver fibrosis effects of Amy and its enzyme metabolite prunasin (Pru) in vivo have not been studied and compared, and studies on Pru are limited. PURPOSE: To investigate the pharmacokinetic characteristics and anti-liver fibrosis effect of Amy and its metabolite Pru in vivo and in vitro, and elucidate whether the metabolism of Amy in vivo for Pru is activated. METHODS: Pru was prepared from Amy via the enzymatic hydrolysis of ß-glucosidase, and isolated by silica gel column chromatography. An efficient and sensitive ultrahigh-performance liquid chromatography-Q exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry was developed and validated to determine simultaneously Amy and Pru in rat plasma after dosing intravenously and orally for pharmacokinetic studies. The affinities of Amy and Pru for ß-glucosidase were compared by enzyme kinetic experiments to explain the possible reasons for the differences in pharmacokinetic behavior. In vitro, the inhibitory effects of Amy and Pru on hepatic stellate cell activation and macrophage inflammation on JS1 and RAW 264.7 cells were determined. In vivo, the ameliorative effects of Amy and Pru on liver fibrosis effects were comprehensively evaluated by CCl4-induced liver fibrosis model in mice. RESULTS: The standard curves of Amy and Pru in rat plasma showed good linearity within the concentration range of 1.31-5000.00 ng/ml, with acceptable selectivity, carry-over, detection limit and quantification limits, intra- and inter-day precision, accuracy, matrix effect, and stability. The Cmax and AUC(0-∞) of Pru (Cmax = 1835.12 ± 268.09 ng/ml, AUC(0-∞) = 103,913.17 ± 14,202.48 ngâ¢min/ml) were nearly 79.51- and 66.22-fold higher than those of Amy (Cmax = 23.08 ± 5.08 ng/ml, AUC(0-∞) = 1569.22 ± 650.62 ngâ¢min/ml) after the oral administration of Amy. The oral bioavailability of Pru (64.91%) was higher than that of Amy (0.19%). The results of enzyme hydrolysis kinetics assay showed that the Vmax and Km of Pru were lower than those of Amy in commercial ß-glucosidase and intestinal bacteria. In vitro cellular assays showed that Amy and Pru were comparable in inhibiting the NO production in the RAW264.7 cell supernatant and the mRNA expression of α-SMA and Col1A1 in JS1 cells. Amy and Pru were also showed comparable activity in ameliorating CCl4-induced liver fibrosis in mice. CONCLUSION: The pharmacokinetic characteristics of Amy and Pru in rat plasma were significantly different. After the separate gavage of Amy and Pru, Amy was absorbed predominantly as it's metabolite Pru, whereas Pru was absorbed predominantly as a prototype. The anti-liver fibrosis effects of Amy and its deglycosylated metabolite Pru were comparable in vivo and in vitro. The deglycosylated activated metabolite Pru of Amy plays an important role in anti-liver fibrosis. These findings will facilitate the further exploitation of Amy and Pru.
RESUMEN
BACKGROUND: Liver fibrosis is a dysregulated wound-healing process in response to diverse liver injuries, and an effective drug therapy is not yet available. Genistein, which is one of the most active natural flavonoids mainly derived from soybean products (e.g., Cordyceps sinensis mycelium), exhibits various biological effects, including hepatoprotective and anti-inflammatory properties. However, the anti-hepatic fibrosis mechanisms of genistein are poorly understood. The aim of our research is to explore the effect and the possible mechanism of genistein against liver fibrosis. MATERIALS AND METHODS: Cell counting kit-8, EdU, and flow cytometry assays were applied to evaluate the effects of genistein on cell viability, proliferation, and cell cycle arrest in human hepatic stellate cell (HSC) line LX2 cells. HSC activation was induced by transforming growth factor-ß1 in LX2 cells and liver fibrosis model was established by the intraperitoneal injection of dimethylnitrosamine (DMN) in rats to assess the anti-fibrosis effects of genistein in vivo and in vitro models. HSC activation was assessed by qRT-PCR, Western blot, immunohistochemistry, and immunofluorescent assay. Liver injury and collagen deposition were evaluated by histopathological assay, serum biochemistry, and hepatic hydroxyproline content assays. The mRNA expressions of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammation related-factors were assessed by qRT-PCR assay. Furthermore, the functional properties of macrophage in the liver were assessed by immunohistochemistry assay. The expression levels of the JAK2/STAT3/SOCS3 signaling pathway related-protein were assessed by Western blot analysis. RESULTS: Genistein significantly inhibited cell viability and proliferation and induced cell cycle arrest at G0/G1 phase in LX2 cells, respectively. Furthermore, oral administration of genistein significantly ameliorated liver injury and the collagen deposition in rats with DMN-induced fibrosis model. Genistein suppressed the expression levels of HSC activation marker α-smooth muscle actin and collagen type I alpha 1 in vivo and in vitro. Genistein significantly decreased the mRNA expression levels of extracellular matrix degradation genes MMP2/9 and TIMP1 in rats. Genistein alleviated the mRNA expression levels of IL-1ß, IL-6, TNF-α, and MCP-1 and regulated the protein expressions of CD68, CD163, and CD206 in the liver. Moreover, genistein attenuated the expressions of p-JAK2/JAK2, p-STAT3/STAT3, and SOCS3 protein both in vivo and in vitro. CONCLUSION: Taken together, our results showed that genistein could be improved liver fibrosis both in vivo and in vitro, probably through regulating the functional properties of macrophage and inhibiting the JAK2/STAT3/SOCS3 signaling pathway.