Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Front Physiol ; 15: 1464989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39444755

RESUMEN

Introduction: Neuropeptides and their receptors constitute diverse and abundant signal molecules in insects, primarily synthesized and released primarily from neurosecretory cells within the central nervous system Neuropeptides act as neurohormones and euromodulators, regulating insect behavior, lifecycle, and physiology by binding to receptors on cell surface. As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-cultured and widely employed in pest management. Insect diapause is a physiological and ecological adaptative strategy acquired in adverse environments. In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. However, little is known about the function of neuropeptides and their receptors in controlling reproductive diapause of C. septempunctata. It is unclear which neuropeptides affect diapause of C. septempunctata. Methods: In this study, RNA-seq technology and bioinformatics were utilized to investigate genes encoding neuropeptides and their receptors in female adults of C. septempunctata. Quantitative real-time PCR (qRT-PCR) analysis was employed to examine gene expression across different development/diapause stages. Results: A total of 17 neuropeptide precursor genes and 9 neuropeptide receptor genes were identified, implicated in regulating various behaviors such as feeding, reproduction, and diapause. Prediction of partial mature neuropeptides from precursor sequences was also performed using available information about these peptides from other species, conserved domains and motifs. During diapause induction, the mRNA abundance of AKH was notably higher on the 10th day compared to non-diapause females, but decreased by the 20th day. In contrast, GPHA showed lower expression levels on the 5th day of diapause induction compared to non-diapause females, but increased significantly by the 15th and 20th days. NPF was higher expressed in head and midgut while DH showed higher expression in the fat body and midgut. Additionally, NPF expression remained consistently lower throughout all stages of diapause induction compared to non-diapause conditions in females. Discussion: This study represents the first sequencing, identification, and expression analysis of neuropeptides and neuropeptide receptor genes in C. septempunctata. Our results could provide a foundational framework for further investigations into the presence, functions, and potential targets of neuropeptides and their receptors, particularly in devising novel strategies for diapause regulation in C. septempunctata.

2.
Cell Biol Toxicol ; 40(1): 88, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422738

RESUMEN

Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited ß-glucuronidase (ß-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of ß-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting ß-GUS.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Escherichia coli , Glucuronidasa , Irinotecán , Escherichia coli/efectos de los fármacos , Irinotecán/farmacología , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Glucuronidasa/metabolismo , Flavanonas/farmacología , Humanos , Flavonoides/farmacología , Masculino
3.
Nat Commun ; 15(1): 9398, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39477963

RESUMEN

A ground-breaking roadmap of III-nitride solid-state deep-ultraviolet light emitters is demonstrated to realize the wafer-scale fabrication of devices in vertical injection configuration, from 2 to 4 inches. The epitaxial device structure is stacked on a GaN template instead of conventionally adopted AlN, where the primary concern of the tensile strain for Al-rich AlGaN on GaN is addressed via an innovative decoupling strategy, making the device structure decoupled from the underlying GaN template. Moreover, the strategy provides a protection cushion against the stress mutation during the removal of substrates. As such, large-sized wafers can be obtained without surface cracks, even after the removal of the sapphire substrates by laser lift-off. Wafer-scale fabrication of 280 nm vertical injection deep-ultraviolet light-emitting diodes is eventually demonstrated, where a light output power of 65.2 mW is achieved at a current of 200 mA, largely thanks to the significant improvement of light extraction. This work will definitely speed up the application of III-nitride solid-state deep-ultraviolet light emitters featuring high performance and scalability.

4.
Int Immunopharmacol ; 143(Pt 1): 113287, 2024 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-39362015

RESUMEN

Paeonol, a phenolic acid compound extracted from the Cortex Moutan, exhibits significant anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to investigate the effects of paeonol on neuroinflammation and depressive-like symptoms, and the underlying mechanisms in a mouse model of sepsis-associated encephalopathy (SAE) induced by lipopolysaccharide (LPS). To assess the therapeutic potential of paeonol in mice treated with LPS, behavioral assessments were conducted using the open-field test (OFT), tail suspension test (TST), and forced swimming test (FST), and quantitative PCR (qPCR), Western blot, and immunofluorescent staining were utilized to determine the expression levels of inflammatory molecules in the hippocampus in vivo and microglial cells in vitro. Our results revealed that paeonol significantly alleviated anxiety and depressive-like symptoms, as evidenced by improved activity in OFT, reduced immobility time in TST and FST, and decreased levels of inflammatory markers such as IL6, TNFα, and PFKFB3. Further in vitro experiments confirmed that paeonol downregulated the expression of pro-inflammatory molecules. A network pharmacology-based strategy combined with molecular docking and cellular thermal shift assay highlighted HIF1A as a potential target for paeonol. Similar anti-inflammatory effects of a HIF1A inhibitor were also observed in microglia treated with LPS. Furthermore, these effects were reversed by CoCl2, a HIF1A agonist, indicating the critical role of the HIF1A signaling pathway in mediating the therapeutic effects of paeonol. These findings highlight the potential of paeonol in modulating the HIF1A pathway, offering a promising therapeutic strategy for neuroinflammation in SAE.


Asunto(s)
Acetofenonas , Antiinflamatorios , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lipopolisacáridos , Microglía , Encefalopatía Asociada a la Sepsis , Transducción de Señal , Animales , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Microglía/efectos de los fármacos , Microglía/metabolismo , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Masculino , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Línea Celular , Simulación del Acoplamiento Molecular , Humanos
5.
Insect Mol Biol ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440724

RESUMEN

Protein disulphide isomerase (PDI) possesses disulphide isomerase, oxidoreductase and molecular chaperone activities, and is involved in regulating various physiological processes. However, there are few studies on the function in insect diapause. In this study, we cloned one novel member PDI family (TMX3, thioredoxin-related transmembrane protein 3) in Arma chinensis. The AcTMX3 encodes 426 amino acids that contains a predicted N-terminal signal sequence, a thioredoxin-like domain with the CXXC active site and a potential transmembrane region, which are typical sequence features of TMX3. RT-qPCR results showed that AcTMX3 was mainly expressed in the head under non-diapause conditions, while AcTMX3 was highly expressed in the fat body (central metabolic organ) under diapause conditions. Moreover, temporal expression profile showed that compared with non-diapause conditions, diapause conditions significantly induced AcTMX3 expression, and the expression of AcTMX3 was enhanced at 15°C. Silencing AcTMX3 in A. chinensis significantly inhibited the expression of antioxidant genes (AcTrx2 and AcTrx-like), increased the content of H2O2 and ascorbate and reduced the survival rate of A. chinensis under diapause conditions. Our results suggested that AcTMX3 played an important role in the resistance of A. chinensis to oxidative stress under diapause conditions.

6.
MethodsX ; 13: 102914, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39253006

RESUMEN

This review critically assesses the determination of low molecular weight volatiles by different methods, providing context for the development of suitable techniques to determine volatile content in plant tissue and soil samples as well as the associated analytical challenges. Although sensitive analytical methods have been reported in recent decades, studies on their application in modern investigative techniques are lacking. Herein, the latest sampling methods in volatile biochemistry, current advancements in the understanding of these analytes, and the significance of these findings for other types of volatiles are summarized. Gas chromatography, high-performance liquid chromatography, ion chromatography, thin-film microextraction, and real-time monitoring techniques are discussed and critically determined. This review concerns the methods most suitable for future research in this area.

7.
Sci Rep ; 14(1): 20568, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232081

RESUMEN

TIMM9 has been identified as a mediator of essential functions in mitochondria, but its association with pan-cancer is poorly understood. We herein employed bioinformatics, computational chemistry techniques and experiments to investigate the role of TIMM9 in pan-cancer. Our analysis revealed that overexpression of TIMM9 was significantly associated with tumorigenesis, pathological stage progression, and metastasis. Missense mutations (particularly the S49L variant), copy number variations (CNV) and methylation alterations in TIMM9 were found to be associated with poor cancer prognosis. Moreover, TIMM9 was positively related with cell cycle progression, mitochondrial and ribosomal function, oxidative phosphorylation, TCA cycle activity, innate and adaptive immunity. Additionally, we discovered that TIMM9 could be regulated by cancer-associated signaling pathways, such as the mTOR pathway. Using molecular simulations, we identified ITFG1 as the protein that has the strongest physical association with TIMM9, which show a promising structural complement.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Pronóstico , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Variaciones en el Número de Copia de ADN , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Mutación Missense
8.
Nat Commun ; 15(1): 7421, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198433

RESUMEN

Recent studies have suggested that mRNA internal m7G and its writer protein METTL1 are closely related to cell metabolism and cancer regulation. Here, we identify that IGF2BP family proteins IGF2BP1-3 can preferentially bind internal mRNA m7G. Such interactions, especially IGF2BP3 with m7G, could promote the degradation of m7G target transcripts in cancer cells. IGF2BP3 is more responsive to changes of m7G modification, while IGF2BP1 prefers m6A to stabilize the bound transcripts. We also demonstrate that p53 transcript, TP53, is m7G-modified at its 3'UTR in cancer cells. In glioblastoma, the methylation level and the half lifetime of the modified transcript could be modulated by tuning IGF2BP3, or by site-specific targeting of m7G through a dCas13b-guided system, resulting in modulation of cancer progression and chemosensitivity.


Asunto(s)
Regiones no Traducidas 3' , Glioblastoma , Estabilidad del ARN , ARN Mensajero , Proteínas de Unión al ARN , Humanos , Regiones no Traducidas 3'/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Células HEK293 , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Desnudos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
9.
Adv Sci (Weinh) ; 11(38): e2406080, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116422

RESUMEN

Ponicidin is a diterpenoid with demonstrated antitumor activity in clinical trials. However, the specific function and mechanism of action against hepatocellular carcinoma (HCC) remain unknown. In this study, it is found that ponicidin significantly inhibited the proliferation and migration of HCC cells. It is shown that ponicidin targets Keap1 and promotes the formation of the Keap1-PGAM5 complex, leading to the ubiquitination of PGAM5, using biotin-labeled ponicidin for target fishing and the HuProtTM Human Proteome Microarray V4.0. Ponicidin is found to activate the cysteine-dependent mitochondrial pathway via PGAM5, resulting in mitochondrial damage and ROS production, thereby promoting mitochondrial apoptosis in HepG2 cells. The first in vitro cocrystal structure of the PGAM5 IE 12-mer peptide and the Keap1 Kelch domain is obtained. Using molecular dynamics simulations to confirm the binding of ponicidin to the Keap1-PGAM5 complex. Based on the depth-based dynamic simulation, it is found that ponicidin can induce the tightening of the Keap1-PGAM5 interaction pocket, thereby stabilizing the formation of the protein complex. Finally, it is observed that ponicidin effectively inhibited tumor growth and promoted tumor cell apoptosis in a BALB/c nude mouse xenograft tumor model. The results provide insight into the anti-HCC properties of ponicidin based on a mechanism involving the Keap1-PGAM5 complex.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Hepáticas , Mitocondrias , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Diterpenos/farmacología , Células Hep G2 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Extractos Vegetales
10.
Front Physiol ; 15: 1440531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113938

RESUMEN

Thioredoxin (Trx), an important part of thioredoxin systems, plays crucial role in maintaining the intracellular redox balance by scavenging reactive oxygen species (ROS). However, few Trxs have been functionally characterized in Arma chinensis, especially in diapause. In this study, diapause induction condition promoted hydrogen peroxide accumulation and increased CAT enzymatic activity and ascorbate content, suggesting that A. chinensis was exposed to high level of ROS. Therefore, we identified AcTrx2 and AcTrx-like, and investigated the relationship with antioxidant defense. It was found that AcTrx2 expression was significantly induced, whereas AcTrx-like expression was the highest on day 10 under diapause conditions. The expression of AcTrx2 and AcTrx-like in fat body, a central metabolic organ of resisting oxidative stress, was significantly increased under diapause conditions, and was significantly improved by 5/15°C (diapause temperature). We investigated the knockdown of AcTrx2 and AcTrx-like in A. chinensis and found that some selected antioxidant genes were upregulated, indicating that the upregulated genes may be functional compensation for AcTrx2 and AcTrx-like silencing. We also found that the enzymatic activities of SOD and CAT, and the metabolite contents of hydrogen peroxide, ascorbate increased after AcTrx2 and AcTrx-like knockdown. These results suggested the AcTrx2 and AcTrx-like may play critical roles in antioxidant defense of A. chinensis diapause.

11.
MethodsX ; 13: 102853, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105090

RESUMEN

Phenolic compounds, abundant secondary metabolites in plants, profoundly influence soil ecosystems, plant growth, and interactions with herbivores. Phenolic in soil microorganisms have the potential to impact a wide range of activities in plant-soil interactions. However, the existing methods for measuring microbial activity are typically time-consuming, intricate, and expensive. In this study, we propose modifications to the method used for the extraction and quantification of various types of phenolics in soil and plant tissues. There have been substantial advancements in research aimed at extracting, identifying, and quantifying phenolic compounds in the plant and soil samples. This study discusses the use of different methodologies in the analysis of phenolic compounds. In addition, we investigated the effect of phenolics on plant growth and cues in gall-forming under environmental disturbances.•This method is the optimum way to extract phenolic from soil and microbial activity in bulk and rhizosphere soil.•It can be used on any soil type and plant tissue, metabolites extracted from living organisms.

12.
Insects ; 15(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057270

RESUMEN

Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124817, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029197

RESUMEN

Surface plasmon driven photocatalytic reactions have great potential for information encryption as well as information security. In this paper, explored the detection concentrations of dye molecule Rhodamine6G (R6G) on three substrates, where complete original Raman spectra signals were still obtained at a concentration of 10-8 M. Utilized photosensitive molecules to investigate the photocatalytic characteristics of 4-nitrobenzenethiol (4-NBT) on three substrates. Excitation light at a wavelength of 633 nm enables local photocatalytic for information signals writing, while 785 nm wavelength excitation light combined with two-dimensional Mapping technology is used for information signal reading. Read information signals are often prone to reading errors due to their own lack of resolution or strong interference from back bottom signals, so error correction processing of information signals is essential. Through comparative exploration, it is found that the ratio method can obtain high-precision and high-resolution information signals, and the interference of the background signals were well suppressed. Leveraging the advantages of Raman fingerprint spectra at the micro/nanoscale, it solves the challenge of incomplete information signals presentation at smaller scales. Additionally, through error correction processing of the information signals, high precision and high-resolution information signals are obtained.

14.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906115

RESUMEN

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Asunto(s)
Regiones no Traducidas 3' , Estabilidad del ARN , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación , Procesamiento Postranscripcional del ARN , Secuenciación de Nanoporos/métodos , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Aprendizaje Automático
15.
Heliyon ; 10(11): e32478, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933978

RESUMEN

Vertebrate testosterone, an androgen present in the testes, is essential for male fertility. Vertebrate-type steroid hormones have been identified in insects, but their function remains unknown. Insect vitellogenin (Vg) is usually a female-specific protein involved in reproductive processes. However, males of some species, such as the green lacewing Chrysopa pallens, have Vg. Here, we demonstrated that the knockdown of C. pallens male Vg by RNAi significantly shortened the lifespan of males, suppressed the reproduction of post-mating females, and strikingly reduced the abundance of several immune-related compounds, including testosterone. LC-MS/MS revealed that C. pallens male testosterone had the same structure and molecular mass as vertebrate testosterone. Topical testosterone application partially restored the lifespan of Vg-deficient males and the reproduction of post-mating females. These results suggest that vertebrate-type testosterone maintains male longevity and female reproduction under the control of the male Vg in C. pallens.

16.
Molecules ; 29(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611743

RESUMEN

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

17.
Opt Express ; 32(6): 9105-9115, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571151

RESUMEN

The strong interaction between light and matter is one of the current research hotspots in the field of nanophotonics, and provides a suitable platform for fundamental physics research such as on nanolasers, high-precision sensing in biology, quantum communication and quantum computing. In this study, double Rabi splitting was achieved in a composite structure monolayer MoS2 and a single Ag@Au hollow nanocube (HNC) in room temperature mainly due to the two excitons in monolayer MoS2. Moreover, the tuning of the plasmon resonance peak was realized in the scattering spectrum by adjusting the thickness of the shell to ensure it matches the energy of the two excitons. Two distinct anticrossings are observed at both excitons resonances, and large double Rabi splittings (90 meV and 120 meV) are obtained successfully. The finite-difference time domain (FDTD) method was also used to simulate the scattering spectra of the nanostructures, and the simulation results were in good agreement with the experimental results. Additionally, the local electromagnetic field ability of the Ag@Au hollow HNC was proved to be stronger by calculating and comparing the mode volume of different nanoparticles. Our findings provides a good platform for the realization of strong multi-mode coupling and open up a new way to construct nanoscale photonic devices.

18.
Cell Prolif ; 57(10): e13646, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38623945

RESUMEN

Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.


Asunto(s)
Hepatocitos , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones , Transducción de Señal , Transglutaminasas/metabolismo , Transglutaminasas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Ratones Endogámicos C57BL , Proliferación Celular , Células Cultivadas
19.
Sci Total Environ ; 924: 171329, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462006

RESUMEN

Phenolic compounds, abundant secondary metabolites in plants, profoundly influence soil ecosystems, plant growth, and interactions with herbivores. In this study, we explore the intricate relationships between phenolics, soil microbes, and gall formation in Ageratina adenophora (A. adenophora), an invasive plant species in China known for its allelopathic traits. Using metabolomic and microbial profiling, significant differences in soil microbial composition and metabolite profiles were observed between bulk and rhizosphere soil samples. Phenolics influenced bacterial communities, with distinct microbial populations enriched in each soil type. Additionally, phenolics impacted soil metabolic processes, with variations observed in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis between different soil treatments. Analysis of phenolic content in plant and soil samples revealed considerable variations, with higher concentrations observed in certain plant tissues and soil types. Bioactive phenols extracted from plant and soil samples were identified using gas chromatography/mass spectrometry (GC-MS), providing insights into the diverse chemical composition of these compounds. Furthermore, the effects of phenolics on plant growth and gall formation were investigated. Phenols exhibited both stimulatory and inhibitory effects on plant growth, with optimal concentrations promoting emergence but higher concentrations hindering growth. Gall formation was influenced by phenolic concentrations, leading to structural alterations in stem tissue and gall morphology. Histochemical analysis revealed starch and lipid accumulation in gall tissues, indicating metabolic changes induced by phenolics. The presence of phenolics disrupted tissue structures and influenced vascular bundle orientation in gall tissues. Overall, our study highlights the multifaceted roles of phenolic compounds in soil ecosystems, plant development, and gall formation, facilitating the utilization of secondary metabolites in agriculture.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Desarrollo de la Planta , Plantas/metabolismo , Fenoles/metabolismo , Dispersión de las Plantas , Microbiología del Suelo , Raíces de Plantas/metabolismo
20.
iScience ; 27(3): 109278, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38482502

RESUMEN

Epigenetic modifications have emerged as key regulators of metabolism-related complex diseases including the alcoholic fatty liver disease (AFLD) prevalent chronic liver disorder with significant economic implications. Building upon previous research that emphasizes ten-eleven translocation (TET) proteins' involvement in adipocyte insulin sensitization and fatty acid oxidation, we explored the role of TET2 protein in AFLD pathogenesis which catalyzes 5-methylcytosine into 5-hydroxymethylcytosine in DNA/RNA. Our findings revealed that TET2 deficiency exacerbates AFLD progression. And TET2 influenced the expression and activity of sterol regulatory element binding protein 1 (SREBP1), a key regulator of hepatic lipid synthesis, by modulating Srebp1 mRNA retention. Employing RIP-qPCR and bisulfite sequencing techniques, we provided evidence of TET2-mediated epigenetic modifications on Srebp1 mRNA, thereby affecting lipid metabolism. Through elucidating the role of methylation in RNA nuclear retention via paraspeckles, our study enhances understanding of AFLD pathogenesis from an epigenetic perspective, paving the way for identifying potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...