Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 8(4): 361-379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486104

RESUMEN

Mice adoptively transferred with mouse B cells edited via CRISPR to express human antibody variable chains could help evaluate candidate vaccines and develop better antibody therapies. However, current editing strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that these key B-cell functions can be preserved by directly and simultaneously replacing recombined mouse heavy and kappa chains with those of human antibodies, using a single Cas12a-mediated cut at each locus and 5' homology arms complementary to distal V segments. Cells edited in this way to express the human immunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated mice. The 10-1074 variants isolated from the mice neutralized a global panel of HIV-1 isolates more efficiently than wild-type 10-1074 while maintaining its low polyreactivity and long half-life. We also used the approach to improve the potency of anti-SARS-CoV-2 antibodies against recent Omicron strains. In vivo affinity maturation of B cells edited at their native loci may facilitate the development of broad, potent and bioavailable antibodies.


Asunto(s)
Anticuerpos Neutralizantes , Linfocitos B , COVID-19 , Anticuerpos Anti-VIH , VIH-1 , SARS-CoV-2 , Animales , Humanos , Ratones , Linfocitos B/inmunología , VIH-1/inmunología , SARS-CoV-2/inmunología , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Afinidad de Anticuerpos/inmunología , Sistemas CRISPR-Cas/genética , Vacunas contra la COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Ratones Endogámicos C57BL
2.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961481

RESUMEN

CRISPR-edited murine B cells engineered to express human antibody variable chains proliferate, class switch, and secrete these antibodies in vaccinated mice. However, current strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that recombined murine heavy- and kappa-variable genes can be directly and simultaneously overwritten, using Cas12a-mediated cuts at their 3'-most J segments and 5' homology arms complementary to distal V segments. Cells edited in this way to express the HIV-1 broadly neutralizing antibodies 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated recipient mice. 10-1074 variants isolated from these mice bound and neutralized HIV-1 envelope glycoprotein more efficiently than wild-type 10-1074 while maintaining or improving its already low polyreactivity and long in vivo half-life. We further validated this approach by generating substantially broader and more potent variants of the anti-SARS-CoV-2 antibodies ZCB11 and S309. Thus, B cells edited at their native loci affinity mature, facilitating development of broad, potent, and bioavailable antibodies and expanding the potential applications of engineered B cells.

3.
NPJ Vaccines ; 8(1): 156, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821446

RESUMEN

During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.

4.
Immunity ; 56(10): 2408-2424.e6, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531955

RESUMEN

V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Vacunas , Animales , Ratones , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Antígenos Virales , Productos del Gen env del Virus de la Inmunodeficiencia Humana
5.
J Virol ; 97(3): e0165022, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36790205

RESUMEN

Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virión , Humanos , COVID-19/virología , Microscopía por Crioelectrón , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/genética , Virión/patogenicidad , Regulación Viral de la Expresión Génica/genética
6.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975938

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Receptores de Coronavirus/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Sitios de Unión , Vacunas contra la COVID-19/química , Femenino , Ingeniería Genética , Glicosilación , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptores de Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Conjugadas/genética , Vacunas Conjugadas/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología
7.
PLoS Pathog ; 17(4): e1009501, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33836016

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , COVID-19/virología , Quirópteros/metabolismo , SARS-CoV-2/genética , Animales , COVID-19/genética , Quirópteros/genética , Especificidad del Huésped/genética , Especificidad del Huésped/inmunología , Humanos , Modelos Moleculares , Mutación , Unión Proteica/genética , Unión Proteica/fisiología , Receptores Virales/metabolismo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465165

RESUMEN

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Asunto(s)
COVID-19/prevención & control , Hidroxicloroquina/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops/virología , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero/virología , Tratamiento Farmacológico de COVID-19
9.
Biochem Biophys Res Commun ; 538: 108-115, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33220921

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos/genética , Ácido Aspártico/genética , Sitios de Unión/genética , Glicina/genética , Humanos , Mutación , Dominios Proteicos/genética
10.
Nat Commun ; 11(1): 6013, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243994

RESUMEN

SARS-CoV-2 variants with spike (S)-protein D614G mutations now predominate globally. We therefore compare the properties of the mutated S protein (SG614) with the original (SD614). We report here pseudoviruses carrying SG614 enter ACE2-expressing cells more efficiently than those with SD614. This increased entry correlates with less S1-domain shedding and higher S-protein incorporation into the virion. Similar results are obtained with virus-like particles produced with SARS-CoV-2 M, N, E, and S proteins. However, D614G does not alter S-protein binding to ACE2 or neutralization sensitivity of pseudoviruses. Thus, D614G may increase infectivity by assembling more functional S protein into the virion.


Asunto(s)
COVID-19/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Virión/metabolismo , Ensamble de Virus/genética , Internalización del Virus , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , Células HEK293 , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
bioRxiv ; 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33236008

RESUMEN

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.

12.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115868

RESUMEN

Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells-efferocytosis-by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell's outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Virosis/metabolismo , Fenómenos Fisiológicos de los Virus , Membrana Celular/metabolismo , Células HEK293 , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Interacciones Huésped-Patógeno , Humanos , Liposomas/metabolismo , Fagocitosis , Proteína S/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Virosis/virología , Internalización del Virus , Virus/clasificación , Virus/metabolismo , Tirosina Quinasa del Receptor Axl
13.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32783919

RESUMEN

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , ARN Mensajero/inmunología , ARN Viral/inmunología , Vacunas Virales/administración & dosificación , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/virología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Furina/genética , Furina/inmunología , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunización/métodos , Inmunogenicidad Vacunal , Memoria Inmunológica/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Neumonía Viral/inmunología , Neumonía Viral/patología , ARN Mensajero/genética , ARN Viral/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas , Vacunas Virales/biosíntesis , Vacunas Virales/genética
14.
bioRxiv ; 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637954

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus ) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat ( R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.

15.
bioRxiv ; 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32587973

RESUMEN

SARS coronavirus 2 (SARS-CoV-2) isolates encoding a D614G mutation in the viral spike (S) protein predominate over time in locales where it is found, implying that this change enhances viral transmission. We therefore compared the functional properties of the S proteins with aspartic acid (S D614 ) and glycine (S G614 ) at residue 614. We observed that retroviruses pseudotyped with S G614 infected ACE2-expressing cells markedly more efficiently than those with S D614 . This greater infectivity was correlated with less S1 shedding and greater incorporation of the S protein into the pseudovirion. Similar results were obtained using the virus-like particles produced with SARS-CoV-2 M, N, E, and S proteins. However, S G614 did not bind ACE2 more efficiently than S D614 , and the pseudoviruses containing these S proteins were neutralized with comparable efficiencies by convalescent plasma. These results show S G614 is more stable than S D614 , consistent with epidemiological data suggesting that viruses with S G614 transmit more efficiently.

16.
Viruses ; 10(12)2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30544871

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as an important human viral pathogen, causing congenital malformation including microcephaly among infants born to mothers infected with the virus during pregnancy. Phylogenetic analysis suggested that ZIKV can be classified into African and Asian lineages. In this study, we have developed a stable plasmid-based reverse genetic system for robust production of both ZIKV prototype African-lineage MR766 and clinical Asian-lineage FSS13025 strains using a tetracycline (Tet)-controlled gene expression vector. Transcription of the full-length ZIKV RNA is under the control of the Tet-responsive Ptight promoter at the 5' end and an antigenomic ribozyme of hepatitis delta virus at the 3' end. The transcription of infectious ZIKV RNA genome was efficiently induced by doxycycline. This novel ZIKV reverse genetics system will be valuable for the study of molecular viral pathogenesis of ZIKV and the development of new vaccines against ZIKV infection.


Asunto(s)
Vectores Genéticos , Regiones Promotoras Genéticas , Genética Inversa , Tetraciclina/farmacología , Virus Zika/genética , África , Asia , Células Cultivadas , Clonación Molecular , ADN Complementario/genética , Doxiciclina/farmacología , Genoma Viral , Virus de la Hepatitis Delta/genética , Filogenia , Plásmidos , Replicación Viral , Virus Zika/patogenicidad
17.
Virology ; 512: 211-221, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28988058

RESUMEN

Infectious bursal disease virus (IBDV) is an important immunosuppressive virus of chickens. Although the gene functions of IBDV have been well characterized, the host responses during IBDV infection remain much poor. In the present study, casein kinase 1 alpha (CK1α), a novel VP2-associated protein, was down-regulated during IBDV replication in DF1 cells. Further experiments showed that siRNA-mediated knockdown of CK1α inhibited IBDV replication, while overexpression of CK1α promoted IBDV growth. Finally, we revealed that the effects of CK1α expression level on IBDV replication were involved in the negative regulation of CK1α on type I interferon receptor (IFNAR1), because ubiquitination assay analyses demonstrated that CK1α could promote the ubiquitination of IFNAR1, thereby affecting the stability of this receptor. In conclusion, down-regulation of CK1α during IBDV infection as a host defense response increased abundance of IFNAR1, which in turn enhanced an inhibitory effect on IBDV replication.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Animales , Quinasa de la Caseína I/genética , Línea Celular , Embrión de Pollo , Regulación hacia Abajo , Unión Proteica , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
18.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28592532

RESUMEN

Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus. Segment A contains two overlapping open reading frames (ORFs), which encode viral proteins VP2, VP3, VP4, and VP5. Segment B contains one ORF and encodes the viral RNA-dependent RNA polymerase, VP1. IBDV ribonucleoprotein complexes are composed of VP1, VP3, and dsRNA and play a critical role in mediating viral replication and transcription during the virus life cycle. In the present study, we identified a cellular factor, VDAC1, which was upregulated during IBDV infection and found to mediate IBDV polymerase activity. VDAC1 senses IBDV infection by interacting with viral proteins VP1 and VP3. This association is caused by RNA bridging, and all three proteins colocalize in the cytoplasm. Furthermore, small interfering RNA (siRNA)-mediated downregulation of VDAC1 resulted in a reduction in viral polymerase activity and a subsequent decrease in viral yield. Moreover, overexpression of VDAC1 enhanced IBDV polymerase activity. We also found that the viral protein VP3 can replace segment A to execute polymerase activity. A previous study showed that mutations in the C terminus of VP3 directly influence the formation of VP1-VP3 complexes. Our immunoprecipitation experiments demonstrated that protein-protein interactions between VDAC1 and VP3 and between VDAC1 and VP1 play a role in stabilizing the interaction between VP3 and VP1, further promoting IBDV polymerase activity.IMPORTANCE The cellular factor VDAC1 controls the entry and exit of mitochondrial metabolites and plays a pivotal role during intrinsic apoptosis by mediating the release of many apoptogenic molecules. Here we identify a novel role of VDAC1, showing that VDAC1 interacts with IBDV ribonucleoproteins (RNPs) and facilitates IBDV replication by enhancing IBDV polymerase activity through its ability to stabilize interactions in RNP complexes. To our knowledge, this is the first report that VDAC1 is specifically involved in regulating IBDV RNA polymerase activity, providing novel insight into virus-host interactions.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Ribonucleoproteínas/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Línea Celular , Pollos , Inmunoprecipitación , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Polimerasa Dependiente del ARN/metabolismo
19.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974565

RESUMEN

Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.


Asunto(s)
Autofagia , Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Enfermedades de las Aves de Corral/virología , Vacuolas/virología , Animales , Infecciones por Birnaviridae/virología , Línea Celular , Embrión de Pollo , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Transducción de Señal , Vacuolas/fisiología , Internalización del Virus , Liberación del Virus , Replicación Viral
20.
Antiviral Res ; 139: 102-111, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27908831

RESUMEN

Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although an interaction between eukaryotic translational initiation factor 4AII (eIF4AII) of the host and viral protein 1 (VP1), the RNA-dependent RNA polymerase (RdRp) of IBDV, has been established, the underlying effects of this interaction on IBDV and the molecular mechanism remain unclear. We here report that interaction of the host eIF4AII with VP1 inhibits the RNA polymerase activity of IBDV to reduce its replication in host cells. We found that ectopically expressed eIF4AII markedly inhibited IBDV growth in DF1 cells, and knockdown of eIF4AII by small interfering RNA significantly enhanced viral replication in CEF cells. Furthermore, IBDV infection led to an increase in host eIF4AII expression, suggesting a feedback mechanism between the host and virus infection both in vitro and in vivo, which further confirmed the involvement of the host eIF4AII in the IBDV life cycle. Thus, via the interaction with VP1, eIF4AII plays a critical role in the IBDV life cycle, by inhibiting viral RNA polymerase activity, leading to a reduction of IBDV replication in cells.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Interacciones Huésped-Patógeno , Virus de la Enfermedad Infecciosa de la Bolsa/enzimología , Proteínas Estructurales Virales/antagonistas & inhibidores , Replicación Viral , Animales , Línea Celular , Pollos , Chlorocebus aethiops , Factor 4A Eucariótico de Iniciación/deficiencia , Factor 4A Eucariótico de Iniciación/genética , Virus de la Enfermedad Infecciosa de la Bolsa/crecimiento & desarrollo , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , ARN Interferente Pequeño , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Células Vero , Proteínas Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...