Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Talanta ; 278: 126549, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018758

RESUMEN

Rapid monitoring of trace antibiotics in the field in real time is essential for environment forewarning and human health. High sensitivity and real-time on-site quantitative monitoring of antibiotic residues can be accomplished by integrating portable sensors alongside fluorescent optics to construct an intelligent sensing platform that smoothly eliminates the instability of conventional detection methods. In this study, a ratiometric fluorescence sensor for the ultrasensitive detection of pefloxacin was built employing the photoinduced electron transfer (PET) mechanism from red Eu-MOFs to Mn2+-PEF complex. A visual color change results from the photoinduced electron transfer process from manganese ions to pefloxacin weakening the ligand metal charge transfer (LMCT) process in Eu-MOFs. This enables the ultrafast visible detection of pefloxacin and produces a transient shift in visual color with a detection limit as low as 15.4 nM. For the detection of pefloxacin in water, tomato, and raw pork samples, various sensing devices based on the developed fluorescent probes exhibit good practicability and accuracy. With the development of the ratiometric fluorescence sensing probe, it is now possible to quickly and quantitatively identify pefloxacin residues in the environment, offering a new method for ensuring the safety of food and people's health.

2.
ACS Appl Mater Interfaces ; 15(30): 36988-36998, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466431

RESUMEN

Microplastics are persistent pollutants that accumulate in the environment and can cause serious toxicity to mammals. At present, few technologies are able to quantitatively detect chemicals and provide morphological information simultaneously. Herein, we developed a dragonfly-wing-mimicking ZnO nanorod array decorated with AgNPs on polydimethylsiloxane (PDMS) as a surface-enhanced Raman spectroscopy (SERS) and photo-induced enhanced Raman spectroscopy (PIERS) substrate for trace analysis of microplastics. The Ag/ZnO@PDMS hybrid nanorod array endows the sensor with high sensitivity and signal repeatability (RSD ∼ 5.89%), ensuring the reliable quantitative analysis of microplastics. Importantly, when the noble metal-semiconductor substrate was pre-radiated with ultraviolet light, a surprising PIERS was attained, achieving an additional enhancement of 11.3-fold higher than the normal SERS signal. By combining the PIERS technology with the "coffee ring effect", the sensor successfully discerned microplastics of polyethylene (PE) and polystyrene (PS) at a trace level of 25 µg/mL even with a portable Raman device. It was capable of identifying PS microspheres in contaminated tap water, lake water, river water, and seawater with detection limits of 25, 28, 35, and 60 µg/mL, respectively. The recovery rates of PS microspheres in four water environments ranged from 94.8 to 102.4%, with the RSD ranging from 2.40 to 6.81%. Moreover, quantitative and visualized detection of microplastics was readily realized by our sensor. This portable PIERS sensor represents a significant step toward the generalizability and practicality of quantitative and visual sensing technology.

3.
Bioorg Chem ; 135: 106495, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004437

RESUMEN

Multivalency is an attractive strategy for effective binding to target protein. Bromodomain and extra-terminal (BET) family features two tandem bromodomains (BD1, BD2), which are considered to be potential new targets for prostate cancer. Herein, we report the rational design, optimization, and evaluation of a class of novel BET bivalent inhibitors based on our monovalent BET inhibitor 7 (Y06037). The representative bivalent inhibitor 17b effectively inhibited the cell growth of LNCaP, exhibiting 32 folds more potency than monovalent inhibitor 7. Besides, 17b induced 95.1 % PSA regression in LNCaP cell at 2 µM. Docking study was further carried out to reveal the potential binding mode of 17b with two BET bromodomains. Our study demonstrates that 17b (Y13021) is a promising BET bivalent inhibitor for the treatment of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Factores de Transcripción/metabolismo , Isoxazoles/farmacología , Dominios Proteicos , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular
4.
RSC Adv ; 13(12): 8270-8280, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36926018

RESUMEN

A highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrate is the guarantee for reliable quantitative analysis. Herein, a three-dimensional TiO2-Ag SERS substrate was prepared by growing a TiO2 nanorods (NRs) array on a TiO2 compact layer (c-TiO2), followed by modification with Ag nanoparticles (AgNPs). The synergy between the c-TiO2, semiconductor TiO2 NRs and the plasmonic AgNPs collaboratively endowed it with high sensitivity, in which c-TiO2 effectively blocked the recombination of electrons and holes, and the charge transfer enhancement contributed 10-fold improvement over that without the c-TiO2 substrate. Besides the high sensitivity, the TiO2-Ag hybrid array SERS substrate also showed quantitative and multi-component detecting capability. The limit of detection (LOD) for crystal violet (CV) was determined to be 10-9 M even with a portable Raman instrument. The TiO2-Ag composite structure was extended to detect organic pesticides (thiram, triazophos and fonofos), and the LODs for thiram, triazophos and fonofos were measured to be 10-7 M, 10-7 M and 10-6 M, respectively. In addition, the realistic simulation detecting pesticide residues for a real sample of dendrobium was demonstrated. The sensitive, quantitative and multiplex analysis of the TiO2-Ag hybrid array substrate indicated its great potential in the rapid detection of pesticide residues in real samples.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122211, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502762

RESUMEN

Conventional surface-enhanced Raman scattering (SERS) molecular detection are based on hard and brittle substrate, which are not suitable for in-situ detection of analytes adsorbed on nonplanar surfaces. Here, we report a simple biomimetic synthesis method to fabricate lotus leaf mastoid structured AgNPs micro/nanoarrays as reliable SERS substrate. By ideal replicating mastoid structure of lotus leaf into a flexible and transparent PDMS film, followed by depositing plasmonic AgNPs, a powerful chemical sensor with high sensitivity and multiplex detecting capability is demonstrated. The employ of periodic mastoid structure array endows the sensor with high signal repeatability (RSD âˆ¼ 8.6 %), solving the general repeatability problem of SERS substrates. In addition, the detailed designed flexible and transparent PDMS substrate is capable of identifying trace analytes on curved surfaces with excellent durability. In the proof-of-concept experiment, a limit of detection (LOD) of (10-5 M to 10-7 M) was achieved on a portable Raman device for three common pesticides residues (thiram, fonofos and triadophos) on dendrobium leaves and stem according to the molecular fingerprint, indicating its excellent in-situ detection capability. Further, the multiplex detection ability of the Ag/PDMS film is also demonstrated by analyzing the mixture of four typical analytes. Benefiting from its high signal uniformity, this flexible Ag/PDMS substrate also showed good quantitative detection capabilities.


Asunto(s)
Lotus , Residuos de Plaguicidas , Residuos de Plaguicidas/análisis , Tiram/análisis , Espectrometría Raman/métodos
6.
Anal Methods ; 14(34): 3250-3259, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993252

RESUMEN

Rapid and on-site Raman spectroscopic identification and quantification of pesticide residues have been restricted to the low instrumental sensitivity of a portable Raman instrument, and no ideal platforms have been reported for analyzing pesticides on real sample surfaces. An efficient method to improve the detection sensitivity is to fabricate a highly sensitive surface-enhanced Raman scattering (SERS) substrate. Here, we present a MOF-derived ZnO@TiO2 heterostructure combined with plasmonic AgNPs as a SERS sensor to achieve synergetic EM and CM enhancement, exhibiting high sensitivity, excellent signal reproducibility (RSD < 5.9%) and superior stability for analysis of model molecules. The SERS sensor achieved a low detection concentration of 10-8 M for both CV and R6G molecular solutions on a portable Raman device. As a proof of concept, we modelled a pesticide residue on real samples of dendrobium leaves. Thiram, triazophos and fonofos solutions were selected as analytes for mimicking the function of on-site analysis. The SERS analytical platform showed not only high sensitivity for single- and multi-component identification, but also quantitative detection of pesticide residues on dendrobium leaves. These preliminary investigations indicate that this SERS analytical platform will allow the development and potential applications in rapid and on-site pesticide analysis.


Asunto(s)
Nanopartículas del Metal , Residuos de Plaguicidas , Plaguicidas , Nanopartículas del Metal/química , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Reproducibilidad de los Resultados , Plata/análisis , Plata/química , Espectrometría Raman
7.
Eur J Med Chem ; 236: 114311, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385803

RESUMEN

TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 µM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Proteínas de Unión al ADN , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proteínas Portadoras/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas de Unión al ADN/antagonistas & inhibidores , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Dominios Proteicos
8.
J Med Chem ; 65(7): 5760-5799, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35333526

RESUMEN

Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).


Asunto(s)
Antineoplásicos , Proteínas Nucleares , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Dominios Proteicos , Factores de Transcripción
9.
Acta Pharmacol Sin ; 43(10): 2735-2748, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35264812

RESUMEN

BRD4 plays a key role in the regulation of gene transcription and has been identified as an attractive target for cancer treatment. In this study, we designed 26 new compounds by modifying 3-ethyl-benzo[d]isoxazole core with sulfonamides. Most compounds exhibited potent BRD4 binding activities with ΔTm values exceeding 6 °C. Two crystal structures of 11h and 11r in complex with BRD4(1) were obtained to characterize the binding patterns. Compounds 11h and 11r were effective for BRD4(1) binding and showed remarkable anti-proliferative activity against MV4-11 cells with IC50 values of 0.78 and 0.87 µM. Furthermore, 11r (0.5-10 µM) concentration-dependently inhibited the expression levels of oncogenes including c-Myc and CDK6 in MV4-11 cells. Moreover, 11r (0.5-10 µM) concentration-dependently blocked cell cycle in MV4-11 cells at G0/G1 phase and induced cell apoptosis. Compound 11r may serve as a new lead compound for further drug development.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Androstenoles , Antineoplásicos/química , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Relación Estructura-Actividad , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Factores de Transcripción
10.
Food Res Int ; 149: 110672, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600674

RESUMEN

Microbial contamination in dairy products is a momentous factor affecting food safety. Studies have shown that Staphylococcus aureus, which is an important causative agent of a range of infectious and foodborne diseases, may remain in raw milk after a series of complex processing processes. Although most S. aureus possess biofilm formation capacity, there are few studies concerning the role of biofilm formation of this bacterium in stress tolerance and longtime survival in the dairy products. In this study, we selected 5 S. aureus (RMSA1, RMSA2, RMSA3, RMSA4 and RMSA5) isolates from raw milk and investigated their virulence and biofilm characteristics. Results from biofilm assays showed that all 6 S. aureus strains (5 dairy isolates and 1 human-derived model strain NCTC8325) could form complete biofilms in vitro. The reverse transcription-PCR experiments confirmed that multiple genes related to virulence factors and biofilm formation were expressed in the 6 strains. Furthermore, we simulated the high temperature (at 60 °C for 30 min) and drying pressure (at 37 °C for 24 h) during dairy processing to detect the survival rate of strains culturedunderbiofilm or planktonic condition. The data showed that under high temperature and dry conditions, the survival rates of strains cultured under biofilm conditions were much higher than that of strains cultured under planktonic conditions. In addition, the adversity resistance associated with biofilm formation was more obvious in the milk-isolated strains compared with strain NCTC8325. This study provides evidence regarding the mechanisms of stress resistance of S. aureus strains isolated from raw milk and contribute to prevention of dairy product contamination caused by this bacterium.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Biopelículas , Humanos , Leche , Staphylococcus aureus/genética , Temperatura
11.
Acta Pharmacol Sin ; 42(12): 2120-2131, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33654218

RESUMEN

Bromodomain and extra-terminal proteins (BETs) are potential targets for the therapeutic treatment of prostate cancer (PC). Herein, we report the design, the synthesis, and a structure-activity relationship study of 6-(3,5-dimethylisoxazol-4-yl)benzo[cd]indol-2(1H)-one derivative as novel selective BET inhibitors. One representative compound, 19 (Y06014), bound to BRD4(1) in the low micromolar range and demonstrated high selectivity for BRD4(1) over other non-BET bromodomain-containing proteins. This molecule also potently inhibited cell growth, colony formation, and mRNA expression of AR-regulated genes in PC cell lines. Y06014 also shows stronger activity than the second-generation antiandrogen enzalutamide. Y06014 may serve as a new small molecule probe for further validation of BET as a molecular target for PC drug development.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Isoxazoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/síntesis química , Indoles/metabolismo , Isoxazoles/síntesis química , Isoxazoles/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
12.
Bioorg Chem ; 94: 103424, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31776034

RESUMEN

Tripartite motif-containing protein 24 (TRIM24), recognized as an epigenetic reader for acetylated H3K23 (H3K23ac) via its bromodomain, has been closely involved in tumorigenesis or tumor progression of several cancers. Developing inhibitors of TRIM24 is significant for functional studies and drug discovery. Herein, we report the identification, optimization and evaluation of N-benzyl-3,6-dimethylbenzo[d]isoxazol-5-amines as TRIM24 bromodomain inhibitors starting from an in house library screening. Structure-based optimization leads to two potent and selective compounds 11d and 11h in an Alphascreen assay with IC50 values of 1.88 µM and 2.53 µM, respectively. The viability assay demonstrates the great potential of this series of compounds as inhibitors of proliferation of prostate cancer (PC) cells LNCaP, C4-2B. A colony formation assay further supports this inhibitory activity. Compounds 11d and 11h inhibit cell proliferation of other cancer types such as non-small cell lung cancer (NSCLC) cells A549 with IC50 values of 1.08 µM and 0.75 µM, respectively. These data suggests that compounds 11d and 11h are promising lead compounds for further research.


Asunto(s)
Proteínas Portadoras/uso terapéutico , Simulación del Acoplamiento Molecular/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Portadoras/farmacología , Diseño de Fármacos , Humanos , Masculino , Estructura Molecular , Relación Estructura-Actividad
13.
Phys Chem Chem Phys ; 21(35): 19288-19297, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31451821

RESUMEN

This paper reports a facile, fast, and cost-effective method for the synthesis of three-dimensional (3D) porous AgNPs/Cu composites as SERS substrates for the super-sensitive and quantitative detection of food organic contaminations. Due to the 3D porous hotspot architecture and the strong plasmonic coupling between Ag and Cu, the porous AgNPs/Cu substrate achieves ultrasensitive detection of multiple analytes as low as 10-11 M (crystal violet, CV), 10-9 M (malachite green, MG), 10-11 M (acephate), and 10-9 M (thiram) even with a portable Raman device. Moreover, this 3D solid substrate has good signal uniformity (RSD < 11%) and superior stability (<14% signal loss), allowing for practical SERS detections. Importantly, by simply wiping the real sample surface using the substrate, it successfully detects CV and MG residues on crayfish, and the limit of detection (LOD) of CV and MG is determined to be 1.14 × 10-9 M and 0.94 × 10-7 M, respectively. Further, the substrate can also be applied to detect acephate on eggplant with a LOD of 1.41 × 10-9 M and thiram on an apple surface with a LOD of 1.04 × 10-7 M. Note that all these SERS detections on real samples have a broad dynamic concentration range and a good linear dependence. As a "proof of concept", multi-component detection on a real sample has also been demonstrated. This 3D solid substrate possesses excellent detection sensitivity, diversity, and accuracy, which allows rapid and reliable determination of toxic substances in foods.


Asunto(s)
Técnicas de Química Analítica/métodos , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Espectrometría Raman , Animales , Técnicas de Química Analítica/economía , Cobre/química , Límite de Detección , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Plata/química
14.
Front Microbiol ; 10: 877, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118922

RESUMEN

Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus.

15.
ACS Sens ; 4(6): 1670-1681, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31117365

RESUMEN

Semiconductor materials have become competitive candidates for surface-enhanced Raman scattering (SERS) substrates; however, their limited SERS sensitivity hinders the practical applications of semiconductors. Here, we develop a hybrid substrate by integrating anatase/rutile TiO2 heterostructure with dense plasmonic hotspots of Ag nanoparticle (AgNPs) for efficient photoinduced enhanced Raman spectroscopy (PIERS). The PIERS mechanism is systematically investigated by means of a portable Raman instrument. When ultraviolet (UV) light irradiates the substrate, the TiO2-Ag hybrid arrays produce remarkable charge-transfer enhancement, which can be ascribed to the highly efficient charge separation driven by heterojunction and transfer from TiO2 heterostructure to AgNPs. This platform allows for the rapid detection of multifold organic species, including malachite green (MG), crystal violet (CV), rhodamine 6G (R6G), thiram, and acephate, and as high as 27.8-fold enhancement over the normal SERS is achieved, representing the highest PIERS magnification up to the present time. The intensive PIERS enhancement makes it ultrasensitively detect analyte concentration of an order of magnitude lower than that of SERS method. The improved sensitivity and resolution can be readily realized by simple UV irradiation, which represents a major advantage of our PIERS methodology. Besides, the integration of uniform TiO2 heterostructure arrays with AgNPs generates superior signal reproducibility with relative standard deviation (RSD) value of less than 14%. In addition, the detected molecules on the substrate can be eliminated by photocatalytic degradation after PIERS measurements by using UV irradiation, which makes the substrate reusable for 15 cycles. The ultrahigh sensitivity, superior reproducibility, and excellent recyclability displayed by our platform may provide new opportunities in field detection analysis coupled with a portable Raman instrument.


Asunto(s)
Contaminantes Ambientales/análisis , Nanopartículas del Metal/química , Semiconductores , Violeta de Genciana/análisis , Límite de Detección , Nanopartículas del Metal/efectos de la radiación , Nanotubos/química , Nanotubos/efectos de la radiación , Compuestos Organotiofosforados/análisis , Fosforamidas , Reproducibilidad de los Resultados , Rodaminas/análisis , Colorantes de Rosanilina/análisis , Plata/química , Plata/efectos de la radiación , Espectrometría Raman/métodos , Tiram/análisis , Titanio/química , Titanio/efectos de la radiación , Rayos Ultravioleta
16.
Food Res Int ; 116: 994-999, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717032

RESUMEN

Cronobacter species are associated with rare but severe infections in newborns, and their tolerance to environmental stress such as acid stress has been described. However, the factors involved in low acid tolerance in Cronobacter are poorly understood. Here, a transposon mutagenesis approach was used to explore the factors involved in acid tolerance in C. malonaticus. Eight mutants from mutant library (n = 215) were successfully screened through a comparison of growth with wild type (WT) strain under acid stress (pH 4.0). Eight mutating sites including glucosyltransferase MdoH, extracellular serine protease, sulfate transporter, phosphate transporter permease subunit PstC, lysine transporter, nitrogen regulation protein NR (II), D-alanine-D-alanine ligase, glucan biosynthesis protein G were successfully identified by arbitrary polymerase chain reaction and sequencing. The biomass of biofilm of eight mutants were significantly reduced using crystal violet staining (CVS) compared with that of WT. furthermore, the more compact biofilms of WT was observed than those of eight mutants through scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Disassembly of biofilms appeared among mutants and WT strain from 48 h to 72 h through the increasing of dead cells and reduction of viable cells and exopolysaccharide. The study reveals the molecular basis involved in acid tolerance of C. malonaticus and a possible relationship between biofilm formation and acid tolerance, which provides valuable information for survival of C. malonaticus under acid stress.


Asunto(s)
Biopelículas , Cronobacter/genética , Mutagénesis , Mutación , Estrés Fisiológico , Biopelículas/crecimiento & desarrollo , Cronobacter/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/genética , Factores de Tiempo
17.
J Dairy Sci ; 102(3): 2017-2021, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638998

RESUMEN

Cronobacter species are a group of opportunistic food-borne pathogens that cause rare but severe infections in neonates. Tolerance to environmental stress in Cronobacter is known; however, factors involved in oxidative stress are undefined. In this study, Cronobacter sakazakii survival, cellular morphology, and biofilm formation in response to oxidative stress were evaluated between the wild type (WT) and an outer membrane protein W (OmpW) mutant. The survival rates of ΔOmpW strain after treatment with 1.0 and 1.5 mM hydrogen peroxide were significantly reduced compared with those of WT. Morphological changes, including cell membrane damage and cell fragmentation, in ΔOmpW were more predominant than those in WT. By crystal violet staining, we also observed increased biomass in ΔOmpW biofilms as compared with WT following treatment with 0.5 and 1.0 mM H2O2. Biofilms using scanning electron microscopy and confocal laser scanning microscopy further confirmed the structural changes of biofilms between WT and ΔOmpW in response to oxidative stress. The current findings show that OmpW contributed to survival of planktonic cells under oxidative stress and the deletion of OmpW facilitated the biofilm formation in C. sakazakii to adapt to oxidative stress.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Biopelículas/crecimiento & desarrollo , Cronobacter sakazakii/fisiología , Estrés Oxidativo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cronobacter sakazakii/citología , Cronobacter sakazakii/genética , Longevidad , Microscopía Confocal , Microscopía Electrónica de Rastreo
18.
ACS Sens ; 3(11): 2446-2454, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30335972

RESUMEN

It is urgent to develop a rapid, reliable, and in-site determination method to detect or monitor trace amounts of toxic substances in the field. Here, we report an alternative surface-enhanced Raman scattering (SERS) method coupled with a portable Raman device on a plasmonic three-dimension (3D) hot spot sensing surface. Plasmonic Ag nanoparticles (AgNPs) were uniformly deposited on 3D TiO2 nanopore arrays as a sensitive SERS substrate, and further coated with graphene oxide (GO). We demonstrate the plasmon-induced SERS enhancement (5.8-fold) and the improvement of catalytic activity by incorporation of plasmonic AgNPs into the 3D TiO2 nanopore arrays. The modification of GO on the TiO2-Ag nanopore array further increases by a 6.2-fold Raman enhancement compared to TiO2-Ag while maintaining good uniformity (RSD < 10%). The optimized TiO2-Ag-GO substrate shows powerful quantitative detection potential for drug residues in fish scales via a simple scrubbing method, and the limit of detection (LOD) for crystal violet (CV) was 10-8 M. The SERS substrate also showed detection practicability of pesticide residues in banana peel with an LOD of 10-7 M. In addition, our TiO2-Ag-GO substrate exhibits excellent SERS self-monitoring performance for catalytic reduction of multiple organics in NaBH4 solution, and the substrate shows good recyclability of 6 cycles. Such a 3D TiO2-Ag-GO substrate is a promising SERS substrate with good sensitivity, uniformity, and reusability, and may be utilized for further miniaturization for point of analytical applications.


Asunto(s)
Residuos de Medicamentos/análisis , Nanopartículas del Metal/química , Nanoporos , Residuos de Plaguicidas/análisis , Titanio/química , Escamas de Animales/química , Animales , Antiinfecciosos Locales/análisis , Peces , Fungicidas Industriales/análisis , Violeta de Genciana/análisis , Grafito/química , Límite de Detección , Musa/química , Reproducibilidad de los Resultados , Colorantes de Rosanilina/análisis , Plata/química , Espectrometría Raman/métodos , Tiram/análisis
19.
Eur J Med Chem ; 152: 542-559, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29758518

RESUMEN

The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.


Asunto(s)
Antineoplásicos/farmacología , Benzoxazinas/farmacología , Isoxazoles/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzoxazinas/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoxazoles/química , Masculino , Estructura Molecular , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
J Med Chem ; 61(7): 3037-3058, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29566488

RESUMEN

The bromodomain and extra-terminal (BET) family proteins have gained increasing interest as drug targets for treatment of castration-resistant prostate cancer (CRPC). Here, we describe the design, optimization, and evaluation of benzo[ d]isoxazole-containing compounds as potent BET bromodomain inhibitors. Cocrystal structures of the representative inhibitors in complex with BRD4(1) provided solid structural basis for compound optimization. The two most potent compounds, 6i (Y06036) and 7m (Y06137), bound to the BRD4(1) bromodomain with Kd values of 82 and 81 nM, respectively. They also exhibited high selectivity over other non-BET subfamily members. The compounds potently inhibited cell growth, colony formation, and the expression of AR, AR regulated genes, and MYC in prostate cancer cell lines. Compounds 6i and 7m also demonstrated therapeutic effects in a C4-2B CRPC xenograft tumor model in mice. These potent and selective BET inhibitors represent a new class of compounds for the development of potential therapeutics against CRPC.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Isoxazoles/química , Isoxazoles/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Proteínas de Ciclo Celular , División Celular/efectos de los fármacos , Diseño de Fármacos , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isoxazoles/farmacocinética , Masculino , Ratones , Modelos Moleculares , Proteínas Nucleares/antagonistas & inhibidores , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Transcripción/antagonistas & inhibidores , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...