Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2388-2406, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38882682

RESUMEN

Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.

2.
BMC Geriatr ; 24(1): 408, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714912

RESUMEN

BACKGROUND: Abnormal amyloid ß (Aß) deposits in the brain are a hallmark of Alzheimer's disease (AD). Insufficient sleep duration and poor sleep quality are risk factors for developing AD. Sleep may play a role in Aß regulation, but the magnitude of the relationship between sleep and Aß deposition remains unclear. This systematic review examines the relationship between sleep (i.e., duration and efficiency) with Aß deposition in later-life adults. METHODS: A search of PubMed, CINAHL, Embase, and PsycINFO generated 5,005 published articles. Fifteen studies met the inclusion criteria for qualitative syntheses; thirteen studies for quantitative syntheses related to sleep duration and Aß; and nine studies for quantitative syntheses related to sleep efficiency and Aß. RESULTS: Mean ages of the samples ranged from 63 to 76 years. Studies measured Aß using cerebrospinal fluid, serum, and positron emission tomography scans with two tracers: Carbone 11-labeled Pittsburgh compound B or fluorine 18-labeled. Sleep duration was measured subjectively using interviews or questionnaires, or objectively using polysomnography or actigraphy. Study analyses accounted for demographic and lifestyle factors. Based on 13 eligible articles, our synthesis demonstrated that the average association between sleep duration and Aß was not statistically significant (Fisher's Z = -0.055, 95% CI = -0.117 ~ 0.008). We found that longer self-report sleep duration is associated with lower Aß (Fisher's Z = -0.062, 95% CI = -0.119 ~ -0.005), whereas the objectively measured sleep duration was not associated with Aß (Fisher's Z = 0.002, 95% CI = -0.108 ~ 0.113). Based on 9 eligible articles for sleep efficiency, our synthesis also demonstrated that the average association between sleep efficiency and Aß was not statistically significant (Fisher's Z = 0.048, 95% CI = -0.066 ~ 0.161). CONCLUSION: The findings from this review suggest that shorter self-reported sleep duration is associated with higher Aß levels. Given the heterogeneous nature of the sleep measures and outcomes, it is still difficult to determine the exact relationship between sleep and Aß. Future studies with larger sample sizes should focus on comprehensive sleep characteristics and use longitudinal designs to better understand the relationship between sleep and AD.


Asunto(s)
Péptidos beta-Amiloides , Sueño , Humanos , Péptidos beta-Amiloides/metabolismo , Sueño/fisiología , Anciano , Calidad del Sueño , Factores de Tiempo , Cognición/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Persona de Mediana Edad , Duración del Sueño
3.
Artículo en Inglés | MEDLINE | ID: mdl-38587584

RESUMEN

Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.

4.
ACS Omega ; 9(12): 14465-14474, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559971

RESUMEN

Nanofibrous polymeric materials, combined with protein therapeutics, play a significant role in biomedical and pharmaceutical applications. However, the upload of proteins into nanofibers with a high yield and controlled release has been a challenging issue. Here, we report the in situ loading of a model protein (bovine serum albumin) into hydrophilic poly(vinyl alcohol) nanofibers via ice-templating, with a 100% protein drug loading efficiency. These protein-loaded nanofibers were further coated by polydopamine in order to improve the nanofiber stability and achieve a controlled protein release. The mass ratio between poly(vinyl alcohol) and bovine serum albumin influenced the percentage of proteins in composite nanofibers and fiber morphology. More particles and less nanofibers were formed with an increasing percentage of bovine serum albumin. By varying the coating conditions, it was possible to produce a uniform polydopamine coating with tunable thickness, which acted as an additional barrier to reduce burst release and achieve a more sustained release profile.

5.
BMC Genomics ; 25(1): 254, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448814

RESUMEN

BACKGROUND: Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS: The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS: These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.


Asunto(s)
Ciclopentanos , Receptores Activados del Proliferador del Peroxisoma , Fosfatidilinositol 3-Quinasas , Pirimidinas , Femenino , Animales , Conejos , Células de la Granulosa , Metabolismo de los Lípidos
6.
J Sleep Res ; : e14090, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940373

RESUMEN

Hippocampal atrophy is a prominent neurodegenerative feature of Alzheimer's disease and related dementias. Alterations in circadian rhythms can exacerbate cognitive aging and neurodegeneration. This study aimed to examine how dim light melatonin onset and melatonin levels are associated with hippocampal volume in cognitively healthy individuals. We studied data from 52 later-life adults (mean age ± SD = 70.0 ± 6.3 years). T1-weighted anatomical images from 3.0 T magnetic resonance imaging data were collected and processed using the BRAINSTools toolbox. Dim light melatonin onset was used to assess circadian timing. The area under the curve was calculated to quantify melatonin concentration levels 6 hr before bedtime, and 14-day wrist actigraphy data were used to assess habitual bedtime. Multiple linear regression modelling with hippocampal volume as the dependent variable was used to analyse the data adjusting for age and sex. The average dim light melatonin onset was 19:45 hours (SD = 84 min), and area under the curve of melatonin levels 6 hr before habitual bedtime was 38.4 pg ml-1 × hr (SD = 29.3). We found that later dim light melatonin onset time (b = 0.16, p = 0.005) and greater area under the curve of melatonin levels 6 hr before habitual bedtime (b = 0.05, p = 0.046) were associated with greater adjusted hippocampal volume. The time between dim light melatonin onset and the midpoint of sleep timing was not associated with hippocampal volume. The findings suggest that earlier circadian timing (dim light melatonin onset) and reduced melatonin may be associated with reduced hippocampal volume in older adults. Future research will help researchers utilize circadian rhythm information to delay brain aging.

7.
Aquac Nutr ; 2023: 1232518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780581

RESUMEN

In this study, we screened the expression stability of six reference genes (18S rRNA, ß-actin, GAPDH, EF1a, B2M, and HPRT1) in hybrid yellow catfish (n = 6), considering the SBM levels, sampling time points, and different tissues. Four different statistical programs, BestKeeper, NormFinder, Genorm, and Delta Ct, combined with a method that comprehensively considered all results, were used to evaluate the expression stability of these reference genes systematically. The results showed that SBM levels significantly impacted the expression stability of most of the reference genes studied and that this impact was time-, dose-, and tissue-dependent. The expression stability of these six reference genes varied depending on tissue, sampling time point, and SBM dosage. Additionally, more variations were found among different tissues than among different SBM levels or sampling time points. Due to its high expression, 18S rRNA was excluded from the list of candidate reference genes. ß-actin and GAPDH in the liver and ß-actin, HPRT1 and EF1a in the intestine were the most stable reference genes when SBM levels were considered. HPRT1, and EF1a in tissues sampled at 2 W and EF1a and ß-actin in tissues sampled at 4 and 6 W were proposed as two stable reference genes when different tissues were considered. When the sampling time points were considered, ß-actin, EF1a, and HPRT1 were the top three stable reference genes in the intestine. In contrast, ß-actin and B2M are the most stable reference genes in the liver. In summary, ß-actin, EF1a, and HPRT1 were the more stable reference genes in this study. The stability of reference genes depends on the tissues, sampling time points, and SBM diet levels in hybrid yellow catfish. Therefore, attention should be paid to these factors before selecting suitable reference genes for normalizing the target genes.

8.
Res Sq ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131764

RESUMEN

Background: Amyloid ß (Aß) is a hallmark of Alzheimer's disease (AD). Insufficient sleep duration and poor sleep quality have been found to be a risk factor of developing AD because sleep may involve regulating Aß. However, the magnitude of the relationship between sleep duration and Aß is still unclear. This systematic review examines the relationship between sleep duration and Aß in later-life adults. Methods: We screened 5,005 published articles searched from relevant electronic databases (i.e., PubMed, CINAHL, Embase, and PsycINFO) and reviewed 14 articles for the qualitative synthesis and 7 articles for the quantitative synthesis. Results: Mean ages of the samples ranged from 63 to 76. Studies measured Aß using cerebrospinal fluid, serum, and positron emission tomography scans with two tracers: Carbone 11-labeled Pittsburgh compound B or fluorine 18-labeled. Sleep duration was subjectively measured using interviews, questionnaires, or using objective measures such as polysomnography or actigraphy. The studies accounted for demographic and lifestyle factors in their analyses. Five of the 14 studies reported a statistically significant association between sleep duration and Aß. Using seven eligible articles, our quantitative synthesis demonstrated that the average association between sleep duration and Aß was not statistically significant (Fisher's Z = -0.006, 95% CI= -0.065 ~ 0.054). Conclusion: This review suggests that caution should be taken when considering sleep duration as the primary factor for Aß levels. More studies are needed using a longitudinal design, comprehensive sleep metrics, and larger sample sizes to advance our understanding of the optimal sleep duration and AD prevention.

9.
J Am Med Inform Assoc ; 30(3): 570-587, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36458955

RESUMEN

CONTEXT: Over 20% of US adults report they experience pain on most days or every day. Uncontrolled pain has led to increased healthcare utilization, hospitalization, emergency visits, and financial burden. Recognizing, assessing, understanding, and treating pain using artificial intelligence (AI) approaches may improve patient outcomes and healthcare resource utilization. A comprehensive synthesis of the current use and outcomes of AI-based interventions focused on pain assessment and management will guide the development of future research. OBJECTIVES: This review aims to investigate the state of the research on AI-based interventions designed to improve pain assessment and management for adult patients. We also ascertain the actual outcomes of Al-based interventions for adult patients. METHODS: The electronic databases searched include Web of Science, CINAHL, PsycINFO, Cochrane CENTRAL, Scopus, IEEE Xplore, and ACM Digital Library. The search initially identified 6946 studies. After screening, 30 studies met the inclusion criteria. The Critical Appraisals Skills Programme was used to assess study quality. RESULTS: This review provides evidence that machine learning, data mining, and natural language processing were used to improve efficient pain recognition and pain assessment, analyze self-reported pain data, predict pain, and help clinicians and patients to manage chronic pain more effectively. CONCLUSIONS: Findings from this review suggest that using AI-based interventions has a positive effect on pain recognition, pain prediction, and pain self-management; however, most reports are only pilot studies. More pilot studies with physiological pain measures are required before these approaches are ready for large clinical trial.


Asunto(s)
Inteligencia Artificial , Hospitalización , Adulto , Humanos , Dimensión del Dolor , Aprendizaje Automático , Dolor
10.
Amino Acids ; 55(1): 101-112, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333524

RESUMEN

Infections induced by fungi, especially the drug-resistant fungi, are difficult clinical problems. Conventional antifungal treatment is effective but due to resistance, treatment failure, and treatment-related toxicity, there is a need for new antifungal drugs. In this study, SA-2 (YYRRLLRVLRRRW) was derived from Cystatin-SA, a saliva protein with a molecular weight of 14 kDa. Meanwhile, the structure-activity of SA-2 and its mutants was also studied. We detected the antimicrobial activity and cytotoxicity of SA-2 and found that SA-2 had a low cytotoxicity toward mammalian cells but a good inhibitory effect on Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), with MIC values of 16-64 µg/mL and 8-32 µg/mL, respectively. Interestingly, SA-2 effectively killed fluconazole-resistant C. neoformans and C. albicans within 12 h. This antifungal activity against fluconazole-resistant fungi was comparable to that of amphotericin B. In addition, the C. neoformans-infected mice model was established to evaluate the anti-infective activity of SA-2 in vivo. Results showed that SA-2 significantly reduced the counts of fungi in lung and brain tissues to protect fluconazole-resistant C. neoformans-infected mice from death without changing mice body weights. Moreover, the dramatically increased pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß induced by intranasal infection of C. neoformans could be obviously declined due to the treatment of SA-2, which may be attributed to the elimination of C. neoformans in time in the infected tissue. For the mode of actions underlying SA-2 against C. neoformans, we found that the cationic peptide SA-2 could adhere to the negatively charged fungal cell membrane to increase the surface potential of C. neoformans in a dose-dependent manner, and finally disrupted the integrity of fungal cell membrane, reflecting as a 60% positive rate of propidium iodide uptake of C. neoformans cells after SA-2 (4 × MIC) treatment. Our study indicated that SA-2 has the potential to develop as a new therapeutic agent against infection induced by drug-resistant fungi.


Asunto(s)
Cryptococcus neoformans , Cistatinas , Animales , Ratones , Antifúngicos/farmacología , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Candida albicans , Cistatinas/farmacología , Mamíferos
11.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559154

RESUMEN

Fibrous materials have unique applications in drug release and biomedical fields. This study reports on the preparation of porous silica nanofibers, using organic nanofibers as templates, and their use for drug release. Different from the commonly used electrospinning method, the organic nanofibers are produced via a self-assembly approach between melamine and benzene-1,3,5-tricarboxylic acid. Silica is then coated on the organic nanofibers via homogenization in a silica sol, a freeze-drying process, and then a sol-gel process. In order to regulate the surface area and mesopore volume of silica nanofibers, cetyltrimethyl ammonium bromide at different concentrations is used as template in the sol-gel process. With the removal of organic nanofibers and the surfactant by calcination, porous silica nanofibers are generated and then assessed as a scaffold for controlled drug release with ketoprofen as a model drug. Poly (D, L-lactide-co-glycolide) is coated on the silica nanofibers to achieve slow burst release and prolonged cumulative release of 25 days. This study demonstrates an effective method of preparing hollow silica nanofibers and the use of such nanofibers for long-term release with high drug loading.

12.
Proc Natl Acad Sci U S A ; 119(46): e2208804119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343253

RESUMEN

Neuronal PER-ARNT-SIM (PAS) domain protein 4 (NPAS4) is a protective transcriptional regulator whose dysfunction has been linked to a variety of neuropsychiatric and metabolic diseases. As a member of the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) transcription factor family, NPAS4 is distinguished by an ability to form functional heterodimers with aryl hydrocarbon receptor nuclear translocator (ARNT) and ARNT2, both of which are also bHLH-PAS family members. Here, we describe the quaternary architectures of NPAS4-ARNT and NPAS4-ARNT2 heterodimers in complexes involving DNA response elements. Our crystallographic studies reveal a uniquely interconnected domain conformation for the NPAS4 protein itself, as well as its differentially configured heterodimeric arrangements with both ARNT and ARNT2. Notably, the PAS-A domains of ARNT and ARNT2 exhibit variable conformations within these two heterodimers. The ARNT PAS-A domain also forms a set of interfaces with the PAS-A and PAS-B domains of NPAS4, different from those previously noted in ARNT heterodimers formed with other class I bHLH-PAS family proteins. Our structural observations together with biochemical and cell-based interrogations of these NPAS4 heterodimers provide molecular glimpses of the NPAS4 protein architecture and extend the known repertoire of heterodimerization patterns within the bHLH-PAS family. The PAS-B domains of NPAS4, ARNT, and ARNT2 all contain ligand-accessible pockets with appropriate volumes required for small-molecule binding. Given NPAS4's linkage to human diseases, the direct visualization of these PAS domains and the further understanding of their relative positioning and interconnections within the NPAS4-ARNT and NPAS4-ARNT2 heterodimers may provide a road map for therapeutic discovery targeting these complexes.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Humanos , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Elementos de Respuesta , Multimerización de Proteína
13.
J Interferon Cytokine Res ; 42(9): 501-512, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35900262

RESUMEN

Arginine is one of the host semiessential amino acids with diverse biological activities, and arginine depletion is associated with the incidence of many diseases. Arginine depletion induced by diet-derived interferon gamma (IFN-γ) leads to malignant transformation and impaired milk quality in healthy lactating bovine mammary epithelial cells (BMECs). However, the molecular mechanism of IFN-γ-induced arginine depletion is unclear. In this study, the BMEC cell line, mammary alveolar cells-large T antigen cells (MAC-T), was stimulated with IFN-γ (10 ng/mL) for 24 h, and cellular arginine and ornithine quantified by liquid chromatography-tandem mass spectrometry. Carnosine synthase 1 (CARNS1) was identified from RNA-seq data, CARNS1 knockdown was achieved using an shRNA interfering plasmid. The expression levels of CARNS1, argininosuccinate synthetase 1 (ASS1), mitogen-activated protein kinase 11 (p38 MAPK), and phosphorylated (p)-p38, and their cognate genes, were analyzed by Western blotting and real-time quantitative polymerase chain reaction. The results showed that IFN-γ inhibited the biosynthesis of arginine, but enhanced its catalysis via disruption of key enzymes involved in arginine metabolism. IFN-γ also inhibited the expression of CARNS1, ASS1, and cationic amino acid transporter 1, while activating the expression and phosphorylation of p38. However, knockdown of CARNS1 reduced arginine level and ASS1 expression and block of either the IFN-γ receptor IFN-γ receptor 2 or p38 relieved both the expression of Carnosine synthase 1 (CARNS1) and ASS1. In summary, these results indicate that IFN-γ induced arginine depletion through inhibition of CARNS1 signaling via activation of p38 in BMECs. These findings provide a novel insight for IFN-γ-related disease control strategies in dairy cows.


Asunto(s)
Carnosina , Interferón gamma , Animales , Antígenos Virales de Tumores/metabolismo , Arginina/metabolismo , Arginina/farmacología , Argininosuccinato Sintasa/metabolismo , Carnosina/metabolismo , Transportador de Aminoácidos Catiónicos 1/metabolismo , Bovinos , Células Epiteliales/metabolismo , Femenino , Lactancia , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Ornitina/metabolismo , ARN Interferente Pequeño , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Nat Commun ; 13(1): 2529, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534502

RESUMEN

Hypoxia-inducible factors (HIFs) are α/ß heterodimeric transcription factors modulating cellular responses to the low oxygen condition. Among three HIF-α isoforms, HIF-3α is the least studied to date. Here we show that oleoylethanolamide (OEA), a physiological lipid known to regulate food intake and metabolism, binds selectively to HIF-3α. Through crystallographic analysis of HIF-3 α/ß heterodimer in both apo and OEA-bound forms, hydrogen-deuterium exchange mass spectrometry (HDX-MS), molecular dynamics (MD) simulations, and biochemical and cell-based assays, we unveil the molecular mechanism of OEA entry and binding to the PAS-B pocket of HIF-3α, and show that it leads to enhanced heterodimer stability and functional modulation of HIF-3. The identification of HIF-3α as a selective lipid sensor is consistent with recent human genetic findings linking HIF-3α with obesity, and demonstrates that endogenous metabolites can directly interact with HIF-α proteins to modulate their activities, potentially as a regulatory mechanism supplementary to the well-known oxygen-dependent HIF-α hydroxylation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Represoras , Proteínas Reguladoras de la Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endocannabinoides , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ligandos , Ácidos Oléicos , Oxígeno/metabolismo
15.
Front Plant Sci ; 13: 815218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360319

RESUMEN

The application of mobile robots is an important link in the development of intelligent greenhouses. In view of the complex environment of a greenhouse, achieving precise positioning and navigation by robots has become the primary problem to be solved. Simultaneous localization and mapping (SLAM) technology is a hot spot in solving the positioning and navigation in an unknown indoor environment in recent years. Among them, the SLAM based on a two-dimensional (2D) Lidar can only collect the environmental information at the level of Lidar, while the SLAM based on a 3D Lidar demands a high computation cost; hence, it has higher requirements for the industrial computers. In this study, the robot navigation control system initially filtered the information of a 3D greenhouse environment collected by a 3D Lidar and fused the information into 2D information, and then, based on the robot odometers and inertial measurement unit information, the system has achieved a timely positioning and construction of the greenhouse environment by a robot using a 2D Lidar SLAM algorithm in Cartographer. This method not only ensures the accuracy of a greenhouse environmental map but also reduces the performance requirements on the industrial computer. In terms of path planning, the Dijkstra algorithm was used to plan the global navigation path of the robot while the Dynamic Window Approach (DWA) algorithm was used to plan the local navigation path of the robot. Through the positioning test, the average position deviation of the robot from the target positioning point is less than 8 cm with a standard deviation (SD) of less than 3 cm; the average course deviation is less than 3° with an SD of less than 1° at the moving speed of 0.4 m/s. The robot moves at the speed of 0.2, 0.4, and 0.6 m/s, respectively; the average lateral deviation between the actual movement path and the target movement path is less than 10 cm, and the SD is less than 6 cm; the average course deviation is <3°, and the SD is <1.5°. Both the positioning accuracy and the navigation accuracy of the robot can meet the requirements of mobile navigation and positioning in the greenhouse environment.

16.
Food Res Int ; 155: 110998, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400417

RESUMEN

Apples are rich in phenolic antioxidants, which have various beneficial effects on human health. The purposes of our study were to evaluate the effects of Lactobacillus fermentum 21828 fermentation on the phytochemical composition and bioactivity of Aksu (Fuji) apple juice (AJ), and to evaluate the hypoglycemic effect of fermented AJ (FAJ) and its effect on intestinal flora. Fermentation altered the phytochemistry and enhanced the biological activity (hypoglycemic and antioxidant activities) of AJ. FAJ improved fasting blood glucose and insulin levels in diabetic mice, regulated blood lipid metabolism, reduced oxidative damage, restored damaged islet cells, and reshaped the intestinal flora of diabetic mice by increasing the relative abundance of Actinobacteria, Bifidobacteria, and Faecalibaculum. The results indicate that FAJ is a fermented product that is rich in bioactive components and has potential hypoglycemic and antioxidant activities.


Asunto(s)
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Malus , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Malus/química , Ratones , Fitoquímicos/farmacología
17.
Natl Sci Rev ; 9(1): nwab016, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35070324

RESUMEN

Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room-temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly-induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.

18.
J Sci Food Agric ; 102(8): 3405-3415, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34825372

RESUMEN

BACKGROUND: Few studies to date have evaluated the use of Lactobacillus and Bifidobacterium in edible fungus fermentation. To obtain a fermented Lentinus edodes liquid product with good taste and effects, a strain with good fermentation performance from nine strains tested was selected, and the physicochemical properties and antioxidant capacity of the resulting product were evaluated. RESULTS: Lactobacillus fermentum 21828 exhibited adhesion, tolerance to low pH and bile salts, and good fermentation performance. The number of viable bacteria was 1.05 × 108 CFU mL-1 , and the extraction rate of crude polysaccharide from L. edodes was 2.79% after fermentation. The effects of fermentation on the contents and composition of nutrients in L. edodes liquid were marked, with changes in total soluble protein, total soluble sugar, total acid, and total phenol levels. The 2,2-diphenyl-1-picrylhydrazyl radical-scavenging rate in the fermentation liquid was 93.01%, which was significantly higher than that in non-fermented liquid (80.33%). Furthermore, analysis of volatile and 5'-nucleotide contents showed that fermentation altered the flavor of the product, whereas sensory evaluation showed that the fermented product was preferred. CONCLUSION: Our study demonstrated that the fermented L. edodes liquid exhibited better nutritional and functional properties, as well as sensory characteristics, compared with unfermented liquid. © 2021 Society of Chemical Industry.


Asunto(s)
Limosilactobacillus fermentum , Hongos Shiitake , Antioxidantes/química , Fermentación , Lactobacillus/metabolismo , Limosilactobacillus fermentum/metabolismo , Hongos Shiitake/metabolismo
19.
Front Vet Sci ; 9: 1057977, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713863

RESUMEN

Background: A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. Methods: Here, we used metagenomic sequencing to characterize the diverse viromes in three principal tick species associated with pathogens, Haemaphysalis concinna, Dermacentor silvarum, and Ixodes persulcatus, in North China. Results: A total of 28 RNA viruses were identified and belonged to more than 12 viral families, including single-stranded positive-sense RNA viruses (Flaviviridae, Picornaviridae, Luteoviridae, Solemoviridae, and Tetraviridae), negative-sense RNA viruses (Mononegavirales, Bunyavirales, and others) and double-stranded RNA viruses (Totiviridae and Partitiviridae). Of these, Dermacentor pestivirus-likevirus, Chimay-like rhabdovirus, taiga tick nigecruvirus, and Mukawa virus are presented as novel viral species, while Nuomin virus, Scapularis ixovirus, Sara tick-borne phlebovirus, Tacheng uukuvirus, and Beiji orthonairovirus had been established as human pathogens with undetermined natural circulation and pathogenicity. Other viruses include Norway mononegavirus 1, Jilin partitivirus, tick-borne tetravirus, Pico-like virus, Luteo-like virus 2, Luteo-likevirus 3, Vovk virus, Levivirus, Toti-like virus, and Solemo-like virus as well as others with unknown pathogenicity to humans and wild animals. Conclusion: In conclusion, extensive virus diversity frequently occurs in Mononegavirales and Bunyavirales among the three tick species. Comparatively, I. persulcatus ticks had been demonstrated as such a kind of host with a significantly higher diversity of viral species than those of H. concinna and D. silvarum ticks. Our analysis supported that ticks are reservoirs for a wide range of viruses and suggested that the discovery and characterization of tick-borne viruses would have implications for viral taxonomy and provide insights into tick-transmitted viral zoonotic diseases.

20.
Complement Ther Clin Pract ; 45: 101492, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34638054

RESUMEN

A substantial number of studies have shown the beneficial effects of mind-body practice on physical fitness among both the healthy middle-aged and elderly adults and patients with chronic diseases. However, its positive effects on college students remain poorly understood. This study aimed to systematically investigate the potential efficiency of the Baduanjin exercise on the maintenance of the homeostasis of body composition and the improvement of the cardiovascular function of the college students. The study revealed a promising efficacy of the Baduanjin exercise in the prevention of the loss of water, inorganic salts, protein, and muscle contents and the accumulation of body fat. Furthermore, the present study also demonstrated the positive efficacy of Baduanjin exercise in decreasing of peripheral and central arterial blood pressure and carotid and femoral artery pulse wave velocity (cfPWV) of the college students. Moreover, the heart rate variability (HRV) analysis was also performed using the assessment of time and frequency domain indices. The data showed that all of the time-domain indices and the high-frequency (HF) band of the HRV relatively increased, whereas the low-frequency (LF) band of the HRV relatively decreased after the long-term Baduanjin exercise. Collectively, the present study suggested that a 12-week Baduanjin exercise could maintain the body composition in a relatively healthy and stable range and improve blood pressure, central hemodynamics, and the arterial stiffness of the college students. The underlying mechanism might be due to the improvement of parasympathetic activity and the suppression of sympathetic activity of college students via Baduanjin exercise.


Asunto(s)
Rigidez Vascular , Adulto , Anciano , Sistema Nervioso Autónomo , Presión Sanguínea , Frecuencia Cardíaca , Hemodinámica , Humanos , Persona de Mediana Edad , Análisis de la Onda del Pulso , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA