Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2405519, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801117

RESUMEN

Pushing intercalation-type cathode materials to their theoretical capacity often suffers from fragile Li-deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g-1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah-level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X-ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next-generation high-energy-density battery materials through structural chemistry design.

2.
Environ Sci Pollut Res Int ; 31(23): 33325-33346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709405

RESUMEN

The environmental pollution caused by petroleum hydrocarbons has received considerable attention in recent years. Microbial remediation has emerged as the preferred method for the degradation of petroleum hydrocarbons, which is experiencing rapid development driven by advancements in molecular biology. Herein, the capacity of different microorganisms used for crude oil bioremediation was reviewed. Moreover, factors influencing the effectiveness of microbial remediation were discussed. Microbial remediation methods, such as bioaugmentation, biostimulation, and bioventilation, are summarized in this review. Aerobic and anaerobic degradation mechanisms were reviewed to elucidate the metabolic pathways involved. The impacts of petroleum hydrocarbons on microorganisms and the environment were also revealed. A brief overview of synthetic biology and a unique perspective of technique combinations were presented to provide insight into research trends. The challenges and future outlook were also presented to stimulate contemplation of the mechanisms involved and the development of innovative techniques.


Asunto(s)
Biodegradación Ambiental , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Restauración y Remediación Ambiental/métodos , Suelo/química , Contaminación por Petróleo , Bacterias/metabolismo
3.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740227

RESUMEN

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Proteínas de Peces , Peróxido de Hidrógeno , Lampreas , Canal Aniónico 2 Dependiente del Voltaje , Proteína Destructora del Antagonista Homólogo bcl-2 , Animales , Canal Aniónico 2 Dependiente del Voltaje/genética , Apoptosis/efectos de los fármacos , Lampreas/genética , Lampreas/inmunología , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Humanos , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Células HEK293 , Regulación de la Expresión Génica/efectos de los fármacos , Filogenia , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria
4.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649204

RESUMEN

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Asunto(s)
Puntos de Acupuntura , Dismenorrea , Electroacupuntura , Ratas Sprague-Dawley , Transducción de Señal , Útero , Quinasas Asociadas a rho , Animales , Femenino , Dismenorrea/terapia , Dismenorrea/metabolismo , Dismenorrea/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Ratas , Humanos , Útero/metabolismo , Músculo Liso/metabolismo , Espasmo/terapia , Espasmo/genética , Espasmo/metabolismo , Espasmo/fisiopatología
5.
Adv Mater ; 36(6): e2305748, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849022

RESUMEN

The interfacial compatibility between cathodes and sulfide solid-electrolytes (SEs) is a critical limiting factor of electrochemical performance in all-solid-state lithium-ion batteries (ASSLBs). This work presents a gas-solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li2 CO3 , onto LiCoO2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g-1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g-1 at 2 C), and exceptional stability in high-loading cathode (28.97 and 23.45 mg cm-2 ) within ASSLBs. Furthermore, the SRL CoO/Li2 CO3 enhances the interfacial stability between LCO and Li10 GeP2 S12 as well as Li3 PS4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi0.8 Co0.1 Mn0.1 O2 cathodes and other reducing gases such as H2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.

6.
Open Life Sci ; 18(1): 20220742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941786

RESUMEN

Ectopic thyroid is a rare malformation induced by a migration defect in the developing gland during embryogenesis. In 90% of cases, the ectopic thyroid is located in the lingual region, whereas it is extremely rare in the abdominal cavity, particularly in the pancreas. A 50-year-old female patient presented to the Taizhou First People's Hospital with a complaint of recurrent mid-lower abdominal pain and diarrhea for approximately a month. The abdominal computed tomography scan revealed a space-occupying lesion with abundant blood supply in the head of the pancreas during the consultation. This led to the suspicion of a neuroendocrine tumor. The doctor considered that this lesion in the head of the pancreas could be responsible for the patient's incontinence. A laparoscopic pancreaticoduodenectomy was performed after relevant tests were undertaken and contraindications were ruled out. The patient was diagnosed with ectopic thyroid of the pancreas through postoperative pathology. Ectopic thyroid can be considered in middle-aged and elderly women who present with a mass with abundant blood supply and an unknown diagnosis. Subsequent treatments should be decided after fine-needle aspiration cytology.

7.
Glob Health Action ; 16(1): 2260142, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37779492

RESUMEN

BACKGROUND: The Health Poverty Alleviation Project (HPAP) has received widespread attention as a primary means of preventing poverty caused by illness. However, further evidence is required to confirm the effects of HPAP. OBJECTIVE: This study examines the effectiveness and mechanisms of action of HPAP using data from a special survey conducted in five Chinese prefectures in 2018-2019. METHOD: This study uses a three-step feasible generalised least-squares method to measure the farm households' vulnerability to poverty. Hierarchical linear regression and propensity score matching were employed to assess the poverty-reduction effects of HPAP. A mediating effects model was used to test how these policies alleviated poverty. RESULTS: The mean vulnerability to poverty among farm households was 0.367, with 11.89% experiencing both poverty and vulnerability, particularly in areas of deep poverty. This study has found that HPAP significantly reduces poverty and is more effective in reducing the vulnerability of non-poor farm households than poor farm households. Additionally, the results suggest that improving human capital stock and reducing medical expenditure are the two pathways through which HPAP can alleviate farm households' vulnerability to poverty. CONCLUSIONS: This study suggests that the vulnerability to poverty perspective should be incorporated into poverty alleviation policy formulation. HPAP enhances differentiation and precision. Thus, a long-term mechanism of HPAP should be developed.


Asunto(s)
Agricultores , Pobreza , Humanos , China , Composición Familiar , Gastos en Salud , Pueblos del Este de Asia
8.
ACS Appl Mater Interfaces ; 15(41): 48818-48825, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796748

RESUMEN

Volatile organic compounds (VOCs) are common environmental pollutants and important biomarkers for early diagnosis of lung cancer. However, aldehydes are difficult to detect directly due to their small Raman scattering cross-section and gaseous phase. Here, a Ag-coated ternary layered double hydroxide (LDH) was designed for the detection and identification of various aldehydes. The specific surface area of CoNi-LDH was increased by doping Fe3+, which provides abundant active sites to capture gas molecules. Furthermore, the energy band gap (Eg) was decreased due to the local amorphous FeCoNi-LDH with an extended band tail, promoting the excitonic transition of Fe0.07(CoNi)0.93-LDH. In addition, the Fermi level of Ag prevented the recombination of electron-hole pairs of Fe0.07(CoNi)0.93-LDH, providing a new bridge for charge transfer between the substrate and the molecule. Ag/Fe0.07(CoNi)0.93-LDH presented excellent surface-enhanced Raman scattering (SERS) performance for aldehyde VOCs by modification with 4-aminothiophenol (4-ATP) to capture aldehydes and realized the detection of benzaldehyde (BZA) at 10 ppb. The enhancement and Raman shift of the b2 mode indicated the contribution of chemical enhancement to the SERS system, so the substrate presented good uniformity. The recycling of the SERS substrate is realized based on the reversibility of the Schiff base reaction. These results manifested that Ag/FeCoNi-LDH has a wide prospect in the application in the trace detection of aldehydes.

9.
Zhongguo Zhen Jiu ; 43(9): 1042-7, 2023 Sep 12.
Artículo en Chino | MEDLINE | ID: mdl-37697880

RESUMEN

OBJECTIVE: To observe the skin surface microcirculation of acupoints of conception vessel, governor vessel and thoroughfare vessel in patients with primary dysmenorrhea using laser speckle contrast imaging (LSCI), and provide acupoint selection basis of acupuncture-moxibustion for primary dysmenorrhea. METHODS: Ninety-nine healthy female college students with regular menstrual cycles (normal group) and 94 female college students with primary dysmenorrhea (dysmenorrhea group) were recruited. Before menstrual period, on the first day of menstruation, and on the third day after menstruation, LSCI was used to observe the surface microcirculation at the abdominal acupoints of conception vessel, i. e. Yinjiao (CV 7), Qihai (CV 6), Shimen (CV 5), Guanyuan (CV 4), Zhongji (CV 3) and Qugou (CV 2), acupoints of thoroughfare vessel, i. e. Huangshu (KI 16), Zhongzhu (KI 15), Siman (KI 14), Qixue (KI 13), Dahe (KI 12), Henggu (KI 11) and acupoints of lumbosacral region of governor vessel, i. e. Xuanshu (GV 5), Mingmen (GV 4), Yaoyangguan (GV 3), Yaoshu (GV 2) as well as two non-acupoints. RESULTS: Before menstrual period, there was no significant difference in the surface blood perfusion of the acupoints between the dysmenorrhea group and the normal group (P>0.05). On the first day of menstruation, the surface blood perfusion of Xuanshu (GV 5), Mingmen (GV 4), Yaoyangguan (GV 3) and right Huangshu (KI 16) in the dysmenorrhea group was higher than that in the normal group (P<0.05, P<0.01). On the third day after menstruation, the surface blood perfusion of the right Henggu (KI 11) in the dysmenorrhea group was lower than that in the normal group (P<0.05). CONCLUSION: In patients with primary dysmenorrhea, on the first day of menstruation, the surface blood perfusion of Xuanshu (GV 5), Mingmen (GV 4), Yaoyangguan (GV 3) of governor vessel, and the right Huangshu (KI 16) of thoroughfare vessel is increased, while on the third day after menstruation, the surface blood perfusion of the right Henggu (KI 11) of thoroughfare vessel is decreased. These findings might provide a basis for acupoint selection in the acupuncture-moxibustion treatment of primary dysmenorrhea.


Asunto(s)
Terapia por Acupuntura , Dismenorrea , Humanos , Femenino , Microcirculación , Dismenorrea/terapia , Ciclo Menstrual , Puntos de Acupuntura
10.
Small ; 19(42): e2301834, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340579

RESUMEN

Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.

11.
Small ; 19(39): e2300802, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259273

RESUMEN

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

12.
Adv Mater ; 35(32): e2301096, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37148533

RESUMEN

Ni-rich layered oxides are the most promising cathodes for Li-ion batteries, but chemo-mechanical failures during cycling and large first-cycle capacity loss hinder their applications in high-energy batteries. Herein, by introducing spinel-like mortise-tenon structures into the layered phase of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811), the adverse volume variations in cathode materials can be significantly suppressed. Meanwhile, these mortise-tenon structures play the role of the expressway for fast lithium-ion transport, which is substantiated by experiments and calculations. Moreover, the particles with mortise-tenon structures usually terminate with the most stable (003) facet. The new cathode exhibits a discharge capacity of 215 mAh g-1 at 0.1 C with an initial Coulombic efficiency of 97.5%, and capacity retention of 82.2% after 1200 cycles at 1 C. This work offers a viable lattice engineering to address the stability and low initial Coulombic efficiency of the Ni-rich layered oxides, and facilitates the implementation of Li-ion batteries with high-energy density and long durability.

13.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110564

RESUMEN

Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 µg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.


Asunto(s)
Eucommiaceae , Goma , Eucommiaceae/química , Bahías , Pirólisis , Cromatografía de Gases y Espectrometría de Masas
14.
ACS Nano ; 17(6): 5570-5578, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36895079

RESUMEN

Effective harvest of electrochemical energy from insulating compounds serves as the key to unlocking the potential capacity from many materials that otherwise could not be exploited for energy storage. Herein, an effective strategy is proposed by employing LiCoO2, a widely commercialized positive electrode material in Li-ion batteries, as an efficient redox mediator to catalyze the decomposition of Na2CO3 via an intercalating mechanism. Differing from traditional redox mediation processes where reactions occur on the limited surface sites of catalysts, the electrochemically delithiated Li1-xCoO2 forms NayLi1-xCoO2 crystals, which act as a cation intercalating catalyzer that directs Na+ insertion-extraction and activates the reaction of Na2CO3 with carbon. Through altering the route of the mass transport process, such redox centers are delocalized throughout the bulk of LiCoO2, which ensures maximum active reaction sites. The decomposition of Na2CO3 thus accelerated significantly reduces the charging overpotential in Na-CO2 batteries; meanwhile, Na compensation can also be achieved for various Na-deficient cathode materials. Such a surface-induced catalyzing mechanism for conversion-type reactions, realized via cation intercalation chemistry, expands the boundary for material discovery and makes those conventionally unfeasible a rich source to explore for efficient utilization of chemical energy.

15.
Angew Chem Int Ed Engl ; 62(10): e202218595, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592112

RESUMEN

The cathode materials work as the host framework for both Li+ diffusion and electron transport in Li-ion batteries. The Li+ diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO2 , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (Veff ) imposed in the bulk, thus driving more Li+ extraction/insertion and making LiCoO2 exhibit superior rate capability (154 mAh g-1 at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.

16.
Chin J Integr Med ; 28(12): 1096-1104, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327047

RESUMEN

OBJECTIVE: To evaluate the effects of auricular acupoint bloodletting (AB) and auricular acupressure (AA) on sleep quality and the levels of melatonin (MT), glutamic acid (Glu), and γ -aminobutyric acid (GABA) in college students with primary insomnia, and to explore the possible mechanism. METHODS: Totally 74 college students at Hebei University of Chinese Medicine with primary insomnia were selected from October 2019 to October 2020. All patients were assigned to AB+AA group (37 cases, received combination of AB and AA) and AA group (37 cases, received only AA on the same acupoints) by a random number table. Each group was treated twice a week for 4 weeks. The Pittsburgh Sleep Quality Index (PSQI) score, Chinese medicine (CM) syndrome score, total effective rate, serum concentrations of MT, Glu, and GABA, and Glu/GABA ratio were compared between the two groups after treatment and at follow-up. The safety of therapy was also evaluated. RESULTS: After 4-week treatment, the total scores of PSQI, each PSQI component score, and the CM syndrome scores in both groups all decreased (P<0.05); the serum MT concentrations in both groups all increased (P<0.05). The concentrations of Glu and GABA in the AB+AA group were significantly higher than those in the AA group after treatment (P<0.05). However, there was no significant difference in the ratio of Glu/GABA in both groups before and after treatment (P>0.05). At follow-up, the CM syndrome score in the AB+AA group was significantly lower than that in the AA group (P<0.05). There was no significant difference between the two groups in total effective rates and adverse events (P>0.05). CONCLUSIONS: Both AB+AA and AA can relieve insomnia symptoms, but a stronger long-term effect were observed for AB+AA. AB+AA can promote the secretion of MT, increase the levels of Glu and GABA more effective than AA, and regulate their imbalance, and thus it may be benificial for treating insomnia.


Asunto(s)
Acupresión , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Puntos de Acupuntura , Venodisección , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Calidad del Sueño , Síndrome , Estudiantes , Ácido gamma-Aminobutírico
17.
Acta Chim Slov ; 0(0): 7680, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36196796

RESUMEN

A series of bi- or mononuclear hexacoordinate iron(III) complexes, [Fe(L)][Fe(bpb)(CN)2]·CH3OH·0.5H2O (1), [Fe(L)][Co(bpb)(CN)2]·CH3OH (2) [(Fe (L))2(4,4'-bipy)](BPh4)2 (3), [Fe(L)(py)](BPh4) (4) and [Fe(L)(dmap)](BPh4) (5) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate, L = N,N'-bis(2-hydroxybenzyliden)-1,7-diamino-4-azaheptane, dmap = 4-dimethylaminopyridine), have been prepared with the pentadentate Schiff base iron(III) compound as assemble precursor and characterized by element analysis, IR and X-ray diffraction. Single crystal structural determination revealed the neutral cyanide-bridged binuclear entity for complexes 1 and 2 and the cationic di- or mononuclear structure for complexes 3-5 with the positive charge(s) balanced by BPh4- ion(s). The experimental study and theoretical simulation of the magnetic property discovered the ferromagnetic coupling between the Fe(III) ions bridged by cyanide group in complex 1 and the always high spin state of the Fe(III) ion coordinated to the Schiff base ligand in both complexes 1 and 2. The temperature dependent magnetic susceptibility investigation over complexes 3-5 showed the occurrence of the thermo-induced gradual complete spin crossover (SCO) property at about 115, 170 and 200 K, respectively.

18.
Drug Deliv ; 29(1): 2658-2670, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35975300

RESUMEN

Glioblastoma is rather recalcitrant to existing therapies and effective interventions are needed. Here we report a novel microenvironment-responsive micellar system (ch-K5(s-s)R8-An) for the co-delivery of the radiosensitizer Dbait and the chemotherapeutic doxorubicin (DOX) to glioblastoma. Accordingly, the ch-K5(s-s)R8-An/(Dbait-DOX) micelles plus radiotherapy (RT) treatment resulted in a high degree of apoptosis and DNA damage, which significantly reduced cell viability and proliferation capacity of U251 cells to 64.0% and 16.3%, respectively. The angiopep-2-modified micelles exhibited substantial accumulation in brain-localized U251 glioblastoma xenografts in mice compared to angiopep-2-lacking micelles. The ch-K5(s-s)R8-An/(Dbait-DOX) + RT treatment group exhibited the smallest tumor size and most profound tumor tissue injury in orthotopic U251 tumors, leading to an increase in median survival time of U251 tumor-bearing mice from 26 days to 56 days. The ch-K5(s-s)R8-An/(Dbait-DOX) micelles can be targeted to brain-localized U251 tumor xenografts and sensitize the tumor to chemotherapy and radiotherapy, thereby overcoming the inherent therapeutic challenges associated with malignant glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Fármacos Sensibilizantes a Radiaciones , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Quimioradioterapia/métodos , Doxorrubicina , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Humanos , Ratones , Micelas , Fármacos Sensibilizantes a Radiaciones/farmacología , Microambiente Tumoral
19.
Nat Commun ; 13(1): 4245, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869136

RESUMEN

Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO3 single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO3 single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion.

20.
Adv Mater ; 34(30): e2202745, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35657036

RESUMEN

The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...