Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(5): e2305988, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994230

RESUMEN

Aqueous zinc-metal batteries are considered to have the potential for energy storage due to their high safety and low cost. However, the practical applications of zinc batteries are limited by dendrite growth and side reactions. Epitaxial growth is considered an effective method for stabilizing Zn anode, especially for manipulating the (002) plane of deposited zinc. However, (002) texture zinc is difficult to achieve stable cycle at high capacity due to its large lattice distortion and uneven electric field distribution. Here, a novel zinc anode with highly (101) texture (denoted as (101)-Zn) is constructed. Due to unique directional guidance and strong bonding effect, (101)-Zn can achieve dense vertical electroepitaxy in near-neutral electrolytes. In addition, the low grain boundary area inhibits the occurrence of side reactions. The resultant (101)-Zn symmetric cells exhibit excellent stability over 5300 h (4 mA cm-2 for 2 mAh cm-2 ) and 330 h (15 mA cm-2 for 10 mAh cm-2 ). Meanwhile, the cycle life of Zn//MnO2 full cell is meaningfully improved over 1000 cycles.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37903333

RESUMEN

Many cathode materials store zinc ions based on the intercalation reaction mechanism in neutral aqueous Zn-ion batteries, and the structural design of the cathodes has been stuck in the curing mode by extending the ion diffusion channel. Here, we first develop halide ions to unlock the electrochemical activity of conversion-type Bi2O3 in aqueous Zn-ion batteries. Notably, the iodide ion shows the best performance compatibility with the Bi2O3 cathode. The electrochemical reaction mechanism studies show that iodide ions can be regarded as a redox medium to reduce the charge-transfer activation energy and motivate the conversion of Bi2O3 from Bi3+ to Bi0 during the cycle. Unsurprising, the discharge-specific capacity can reach 436.8 mAh g-1 at 0.5 A g-1 and achieve a cyclic lifespan of 6000 cycles at a current density of 3 A g-1. The activation of the Bi2O3 conversion reaction by iodide ions is of great significance for broadening the research range of ZIB cathode materials.

3.
Nano Lett ; 23(17): 7934-7940, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624088

RESUMEN

Garnet-based solid-state electrolytes are considered crucial candidates for solid-state Li batteries due to their high Li+ conductivity and nonflammability; however, poor interfacial contact with the Li anode and growth of Li dendrites limit their application. Herein, a high-activity titanium-oxygen cluster is used as a brazing filler to braze the Li6.5La3Zr1.5Ta0.5O12 (LLZTO) with an Li anode into the whole unit. The brazing layer leads to a significantly lower interfacial impedance of 8.32 Ω cm2. Furthermore, the brazing layer is an isotropic amorphous ion-electron hybrid conductive layer, which significantly promotes Li+ transport and regulates the distribution of the electric field, therefore inhibiting the growth of Li dendrites. The cell exhibits an ultrahigh critical current density of 2.3 mA cm-2 and stable cycling of over 4000 h at 0.5 mA cm-2 (25 °C).

4.
Chem Commun (Camb) ; 59(71): 10640-10643, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37580999

RESUMEN

Methyl 1H-1,2,4-triazole-3-carboxylate (MTC) was added into lithium metal batteries as an electrolyte additive, and not only did this addition lead to formation of solid electrolyte interfaces to protect both the anode and cathode, but the added MTC also served as a Lewis base in removing HF from the electrolyte to prevent the electrolyte from deteriorating. Therefore, the addition of MTC, in an appropriate amount, can be very effective at improving the electrochemical performance of lithium metal batteries.

5.
Nat Commun ; 14(1): 291, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653348

RESUMEN

The slow redox kinetics of polysulfides and the difficulties in decomposition of Li2S during the charge and discharge processes are two serious obstacles to the practical application of lithium-sulfur batteries. Herein, we construct the Fe-Co diatomic catalytic materials supported by hollow carbon spheres to achieve high-efficiency catalysis for the conversion of polysulfides and the decomposition of Li2S simultaneously. The Fe atom center is beneficial to accelerate the discharge reaction process, and the Co atom center is favorable for charging process. Theoretical calculations combined with experiments reveal that this excellent bifunctional catalytic activity originates from the diatomic synergy between Fe and Co atom. As a result, the assembled cells exhibit the high rate performance (the discharge specific capacity achieves 688 mAh g-1 at 5 C) and the excellent cycle stability (the capacity decay rate is 0.018% for 1000 cycles at 1 C).

6.
Adv Mater ; 34(2): e2105133, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676914

RESUMEN

The zinc (Zn)-ion battery has attracted much attention due to its high safety and environmental protection. At present, the critical issues of the generation of dendrites and the accumulation of dead Zn on the surface will lead to a sharp decline of the battery life. Zn dendrites can be inhibited to some extent by constructing an interface protective coating. However, the existing rigid coating method cannot maintain conformal contact with Zn due to the volume change of Zn deposition and will cause fracture irreversibly during the cycle. Here, a highly self-adaptable poly(dimethylsiloxane) (PDMS)/TiO2- x coating is developed that can dynamically adapt to volume changes and inhibit dendrites growth. PDMS has high dynamic and self-adaptability due to the crosslinking of the B-O bond. In addition, the rapid and uniform transfer of Zn2+ is induced by the oxygen-vacancy-rich TiO2- x . The assembled cells still achieve 99.6% coulombic efficiency after 700 cycles at a current density of 10 mA cm-2 . The adaptive interface coating constructed provides a sufficient guarantee for the stable operation of the Zn anode.

7.
Nanomicro Lett ; 14(1): 40, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34950984

RESUMEN

Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur (Li-S) batteries. Herein, high-index faceted iron oxide (Fe2O3) nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts, effectively improving the electrochemical performance of Li-S batteries. The theoretical and experimental results all indicate that high-index Fe2O3 crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li2S. The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g-1 at 0.1 C and excellent cycling performance with a low capacity fading of 0.025% per cycle during 1600 cycles at 2 C. Even with a high sulfur loading of 9.41 mg cm-2, a remarkable areal capacity of 7.61 mAh cm-2 was maintained after 85 cycles. This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering, deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry, affording a novel perspective for the design of advanced sulfur electrodes.

8.
Small ; 17(42): e2102962, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34520126

RESUMEN

Polysulfide shuttling and sluggish sulfur redox kinetics hinder the cyclability and rate capability of lithium-sulfur (Li-S) batteries. The intrinsic redox kinetics of sulfur cathodes strongly depends on the interaction between catalysts and sulfur species. Herein, N-doped CoTe2 is proposed as an effective dual-anchoring electrocatalyst, which can simultaneously bind Li and S atoms in lithium polysulfides via ionic Te-Li/N-Li bonding and coordinate covalent Co-S bonding. The incorporated N not only serves as enhanced lithiophilic site, but also an agent to improve the sulfiphilicity of the Co site as revealed by a series of experimental and computational results. Benefiting from these superiorities, the use of N-doped CoTe2 as a catalytic interlayer enables efficient operation of Li-S batteries in terms of impressive rate capability of 758 mAh g-1 at 4 C and very low capacity decay of 0.021% per cycle over 1000 cycles. The material and strategy demonstrated in this work may open the door toward developing more advanced Li-S electrocatalysts.

9.
ACS Nano ; 15(10): 16515-16524, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34590820

RESUMEN

Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.

10.
Int J Adv Manuf Technol ; 117(9-10): 2565-2600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34465936

RESUMEN

Cutting fluid has cooling and lubricating properties and is an important part of the field of metal machining. Owing to harmful additives, base oils with poor biodegradability, defects in processing methods, and unreasonable emissions of waste cutting fluids, cutting fluids have serious pollution problems, which pose challenges to global carbon emissions laws and regulations. However, the current research on cutting fluid and its circulating purification technique lacks systematic review papers to provide scientific technical guidance for actual production. In this study, the key scientific issues in the research achievements of eco-friendly cutting fluid and waste fluid treatment are clarified. First, the preparation and mechanism of organic additives are summarized, and the influence of the physical and chemical properties of vegetable base oils on lubricating properties is analyzed. Then, the process characteristics of cutting fluid reduction supply methods are systematically evaluated. Second, the treatment of oil mist and miscellaneous oil, the removal mechanism and approach of microorganisms, and the design principles of integrated recycling equipment are outlined. The conclusion is concluded that the synergistic effect of organic additives, biodegradable vegetable base oils and recycling purification effectively reduces the environmental pollution of cutting fluids. Finally, in view of the limitations of the cutting fluid and its circulating purification technique, the prospects of amino acid additive development, self-adapting jet parameter supply system, matching mechanism between processing conditions and cutting fluid are put forward, which provides the basis and support for the engineering application and development of cutting fluid and its circulating purification.

11.
J Acoust Soc Am ; 150(2): 878, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34470324

RESUMEN

Materials under vibration experience internal stress waves that can cause material failure or energy loss due to inelastic vibration. Traditionally, failure is defined in terms of material acceleration, yet this approach has many drawbacks, principally because it is not invariant with respect to scale, type of vibration, or material choice. Here, the likelihood of failure is instead considered in terms of the maximum vibration or particle velocity for various metals, polymers, and structural materials. The exact relationship between the maximum particle velocity and the maximum induced stress may be derived, but only if one knows the details of the vibration, material, flaws, and geometry. Statistical results with over thousands of individual trials are presented here to demonstrate a wide variety of vibrations across a sufficient variety of these choices. Failure in this context is defined as either fracture or plastic yield, the latter associated with inelastic deformation and energy loss during vibration. If the maximum permissible cyclical stress in material vibration is known, to at least an order of magnitude, the probability of this type of failure may be computed for a range of vibration velocities in each material. The results support the notion that a maximum particle velocity on the order of 1 m/s is a universal and critical limit that, upon exceeding, causes the probability of failure to become significant regardless of the details of the material, geometry, or vibration. We illustrate this in a specific example relevant to acoustofluidics, a simple surface acoustic wave device. The consequences of particle velocity limit analysis can effectively be used in materials and structural engineering to predict when dynamic material particle velocity can cause inelastic losses or failure via brittle fracture, plastic deformation, or fatigue failure.

12.
Adv Sci (Weinh) ; 8(13): 2100408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34258166

RESUMEN

Controllable manipulation and effective mixing of fluids and colloids at the nanoscale is made exceptionally difficult by the dominance of surface and viscous forces. The use of megahertz (MHz)-order vibration has dramatically expanded in microfluidics, enabling fluid manipulation, atomization, and microscale particle and cell separation. Even more powerful results are found at the nanoscale, with the key discovery of new regimes of acoustic wave interaction with 200 fL droplets of deionized water. It is shown that 40 MHz-order surface acoustic waves can manipulate such droplets within fully transparent, high-aspect ratio, 100 nm tall, 20-130 micron wide, 5-mm long nanoslit channels. By forming traps as locally widened regions along such a channel, individual fluid droplets may be propelled from one trap to the next, split between them, mixed, and merged. A simple theory is provided to describe the mechanisms of droplet transport and splitting.

13.
Phys Rev Lett ; 126(16): 164502, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33961464

RESUMEN

Past forms of acoustic streaming, named after their progenitors Eckart (1948), Schlichting (1932), and Rayleigh (1884), serve to describe fluid and particle transport phenomena from the macro to micro-scale. Governed by the fluid viscosity, traditional acoustic streaming arises from second-order nonlinear coupling between the fluid's density and particle velocity, with the first-order acoustic wave time averaging to zero. We describe a form of acoustogeometric streaming that has a nonzero first-order contribution. Experimentally discovered in nanochannels of a height commensurate with the viscous penetration depth of the fluid in the channel, it arises from nonlinear interactions between the surrounding channel deformation and the leading order acoustic pressure field, generating flow pressures three orders of magnitude greater than any known acoustically mediated mechanism. It enables the propulsion of fluids against significant Laplace pressure, sufficient to produce 6 mm/s flow in a 130-150 nm tall nanoslit. We find quantitative agreement between theory and experiment across a variety of fluids and conditions, and identify the maximum flow rate with a channel height 1.59 times the viscous penetration depth.

14.
Lab Chip ; 21(7): 1352-1363, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33565534

RESUMEN

Acoustofluidics has promised to enable lab-on-a-chip and point-of-care devices in ways difficult to achieve using other methods. Piezoelectric ultrasonic transducers-as small as the chips they actuate-provide rapid fluid and suspended object transport. Acoustofluidic lab-on-chip devices offer a vast range of benefits in early disease identification and noninvasive drug delivery. However, their potential has long been undermined by the need for benchtop or rack-mount electronics. The piezoelectric ultrasonic transducers within require these equipment and thus acoustofluidic device implementation in a bedside setting has been limited. Here we detail a general process to enable the reader to produce battery or mains-powered microcircuits ideal for driving 1-300 MHz acoustic devices. We include the general design strategy for the circuit, the blocks that collectively define it, and suitable, specific choices for components to produce these blocks. We furthermore illustrate how to incorporate automated resonance finding and tracking, sensing and feedback, and built-in adjustability to accommodate devices' vastly different operating frequencies and powers in a single driver, including examples of fluid and particle manipulation typical of the needs in our discipline. With this in hand, the many groups active in lab-on-a-chip acoustofluidics can now finally deliver on the promise of handheld, point-of-care technologies.


Asunto(s)
Acústica , Dispositivos Laboratorio en un Chip , Suministros de Energía Eléctrica , Transductores , Ultrasonido
15.
Lab Chip ; 21(5): 904-915, 2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33438699

RESUMEN

Asymmetric surface acoustic waves have been shown useful in separating particles and cells in many microfluidics designs, mostly notably sessile microdroplets. However, no one has successfully extracted target particles or cells for later use from such samples. We present a novel omnidirectional spiral surface acoustic wave (OSSAW) design that exploits a new cut of lithium niobate, 152 Y-rotated, to rapidly rotate a microliter sessile drop to ∼10 g, producing efficient multi-size particle separation. We further extract the separated particles for the first time, demonstrating the ability to target specific particles, for example, platelets from mouse blood for further integrated point-of-care diagnostics. Within ∼5 s of surface acoustic wave actuation, particles with diameter of 5 µm and 1 µm can be separated into two portions with a purity of 83% and 97%, respectively. Red blood cells and platelets within mouse blood are further demonstrated to be separated with a purity of 93% and 84%, respectively. These advancements potentially provide an effective platform for whole blood separation and point-of-care diagnostics without need for micro or nanoscale fluidic enclosures.


Asunto(s)
Microfluídica , Sonido , Animales , Separación Celular , Ratones
16.
ACS Nano ; 14(11): 16105-16113, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33078923

RESUMEN

Precisely tuning the coordination environment of the metal center and further maximizing the activity of transition metal-nitrogen carbon (M-NC) catalysts for high-performance lithium-sulfur batteries are greatly desired. Herein, we construct an Fe-NC material with uniform and stable Fe-N2 coordination structure. The theoretical and experimental results indicate that the unsaturated Fe-N2 center can act as a multifunctional site for anchoring lithium polysulfides (LiPSs), accelerating the redox conversion of LiPSs and reducing the reaction energy barrier of Li2S decomposition. Consequently, the batteries based on a porous carbon nitride supported Fe-N2 site (Fe-N2/CN) host exhibit excellent cycling performance with a capacity decay of 0.011% per cycle at 2 C after 2000 cycles. This work deepens the understanding of the relationship between electronic structure of M-NC sites and the catalysis effect for the conversion of LiPSs. This strategy also provides a potent guidance for the further application of M-NC materials in advanced lithium-sulfur batteries.

17.
Adv Mater ; 32(42): e1908420, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32902016

RESUMEN

The weak van der Waals interactions enable ion-intercalation-type hosts to be ideal pseudocapacitive materials for energy storage. Here, a methodology for the preparation of hydrated vanadium dioxide nanoribbon (HVO) with moderate transport pathways is proposed. Out of the ordinary, the intercalation pseudocapacitive reaction mechanism is discovered for HVO, which powers high-rate capacitive charge storage compared with the battery-type intercalation reaction. The main factor is that the defective crystalline structure provides suitable ambient spacing for rapidly accommodating and transporting cations. As a result, the HVO delivers a fast Zn2+ ion diffusion coefficient and a low Zn2+ diffusion barrier. The electrochemical results with intercalation pseudocapacitance demonstrate a high reversible capacity of 396 mAh g-1 at 0.05 A g-1 , and even maintain 88 mAh g-1 at a high current density of 50 A g-1 .

18.
Chem Asian J ; 15(22): 3696-3708, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32851776

RESUMEN

Metallic zinc (Zn) is considered to be a safe and low-cost anode for rechargeable batteries. Thus, several zinc metal batteries (ZMBs) have been well developed, i. e., zinc silver batteries, Zn-MnO2 batteries, nickel-zinc batteries, zinc-air batteries and other kinds of zinc ion batteries. ZMBs are strongly correlated with electrochemistry, electrodes, electrolytes and battery structures. To support the development of this field, we herein invite some famous research experts to write this roadmap for giving some guidance in future research. The roadmap will include their research status, challenge, opportunities, and the technology advance in their fields. We expect this roadmap will produce active influence in developing green, low-cost, safe ZMBs for our bright life in future.

19.
Adv Sci (Weinh) ; 7(14): 2000146, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32714747

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are an alternative energy storage system for large-scale grid applications compared with lithium-ion batteries, when the low cost, safety, and durability are taken into consideration. However, the reliability of the battery systems always suffers from the serious challenge of the large Zn dendrite formation and "dead Zn," thus bringing out the inferior cycling stability, and even cell shorting. Herein, a dendrite-free organic anode, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) polymerized on the surface of reduced graphene oxide (PTCDI/rGO) utilized in ZIBs is reported. Moreover, the theoretical calculations prove the reason for the low redox potential. Due to the protons and zinc ions coparticipant phase transfer mechanism and the high charge transfer capability, the PTCDI/rGO electrode provides superior rate capability (121 mA h g-1 at 5000 mA g-1, retaining the 95% capacity of that compared with 50 mA g-1) and a long cycling life span (96% capacity retention after 1500 cycles at 3000 mA g-1). In addition, the proton coparticipation energy storage mechanism of active materials is elucidated by various ex-situ methods.

20.
J Vis Exp ; (160)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32628169

RESUMEN

Manipulation of fluids and particles by acoustic actuation at small scale is aiding the rapid growth of lab-on-a-chip applications. Megahertz-order surface acoustic wave (SAW) devices generate enormous accelerations on their surface, up to 108 m/s2, in turn responsible for many of the observed effects that have come to define acoustofluidics: acoustic streaming and acoustic radiation forces. These effects have been used for particle, cell, and fluid handling at the microscale-and even at the nanoscale. In this paper we explicitly demonstrate two major fabrication methods of SAW devices on lithium niobate: the details of lift-off and wet etching techniques are described step-by-step. Representative results for the electrode pattern deposited on the substrate as well as the performance of SAW generated on the surface are displayed in detail. Fabrication tricks and troubleshooting are covered as well. This procedure offers a practical protocol for high frequency SAW device fabrication and integration for future microfluidics applications.


Asunto(s)
Acústica/instrumentación , Niobio/química , Óxidos/química , Sonido , Electrodos , Procesamiento de Imagen Asistido por Computador , Rayos Láser , Propiedades de Superficie , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...