Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Sci Transl Med ; 16(767): eadk9524, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356747

RESUMEN

MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.


Asunto(s)
Glioblastoma , Sistemas de Lectura Abierta , Proteínas Proto-Oncogénicas c-myc , Receptor trkB , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Animales , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sistemas de Lectura Abierta/genética , Ratones , Línea Celular Tumoral , Receptor trkB/metabolismo , Proliferación Celular/efectos de los fármacos , Unión Proteica , Transducción de Señal , Péptidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
Sci Transl Med ; 16(767): eado1573, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356744

RESUMEN

The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.


Asunto(s)
ARN Helicasas DEAD-box , Metilasas de Modificación del ADN , Resistencia a Antineoplásicos , Glioblastoma , ARN Largo no Codificante , Temozolomida , Proteínas Supresoras de Tumor , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Regiones Promotoras Genéticas/genética , Metilación de ADN/genética , Metilación de ADN/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Línea Celular Tumoral , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Fosforilación/efectos de los fármacos
3.
Int Immunopharmacol ; 142(Pt A): 113075, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260312

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children. Within MB, tumors driven by the Sonic Hedgehog (SHH) pathway represent the most heterogeneous subtype, known as SHH subtype medulloblastoma (SHH-MB). Tenovin-6, a recognized p53 activator, has been demonstrated to inhibit autophagy and modulate sirtuin activity, underscoring its potential as a novel therapeutic agent across various malignancies. However, its efficacy in treating SHH-MB remains unexplored. This study aims to investigate the inhibitory effects of tenovin-6 on SHH-MB and elucidate its underlying signaling pathways. We assessed the impact of tenovin-6 on cell proliferation through the CCK-8 and colony formation assays. The scratch and transwell invasion assays were utilized to evaluate the drug's effects on metastasis. Apoptosis and reactive oxygen species (ROS) levels were measured using flow cytometry. Potential signaling pathways were identified via transcriptomics and quantitative PCR (qPCR). Our in vivo studies involved a mouse xenograft model to explore tenovin-6's anticancer efficacy against SHH-MB. The findings indicate that tenovin-6 not only inhibits cell proliferation and metastasis in SHH-MB cell lines but also promotes apoptosis, which is closely linked to its proliferation-inhibiting properties. Additionally, animal experiments confirmed that tenovin-6 suppresses MB growth in vivo. We discovered that tenovin-6 reduces intracellular ROS levels and inhibits autophagy in SHH-MB by disrupting the fusion of autophagosomes with lysosomes, likely through inducing autophagosome formation.

4.
Front Immunol ; 15: 1448201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318634

RESUMEN

There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.


Asunto(s)
Síndrome de Liberación de Citoquinas , Yin-Yang , Humanos , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Animales , Inflamación/inmunología
5.
Cell Rep ; 43(8): 114621, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39153200

RESUMEN

Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor ß (TGF-ß) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Organoides , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Organoides/metabolismo , Organoides/inmunología , Ratones , Femenino , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL , Memoria Inmunológica , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/citología , Transducción de Señal , Vagina/inmunología , Vagina/citología , Técnicas de Cocultivo
6.
Cell Rep Med ; 5(8): 101658, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053460

RESUMEN

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.


Asunto(s)
Neoplasias Encefálicas , Receptor gp130 de Citocinas , Resistencia a Antineoplásicos , Células Mieloides , Transducción de Señal , Temozolomida , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Animales , Transducción de Señal/efectos de los fármacos , Temozolomida/farmacología , Ratones , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Células Mieloides/metabolismo , Células Mieloides/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Daño del ADN/efectos de los fármacos
7.
Cell Prolif ; : e13715, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982593

RESUMEN

The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM. Our observations suggest that HSCs can respond to the mechanical heterogeneity of the BM microenvironment, exhibiting diversity in cell mechanics, haematopoietic pool maintenance and differentiated lineages. Hydrogels with higher stiffness promote the preservation of long-term repopulating HSCs (LT-HSCs), while those with lower stiffness support multi-potent progenitors (MPPs) viability in vitro. Furthermore, we established a comprehensive transcriptional profile of haematopoietic subpopulations to reflect the multipotency of haematopoietic stem and progenitor cells (HSPCs) that are modulated by niche-like stiffness. Our findings demonstrate that HSPCs exhibit completely distinct downstream differentiated preferences within hydrogel systems of varying stiffness. This highlights the crucial role of tissue-specific mechanical properties in HSC lineage decisions, which may provide innovative solutions to clinical challenges.

8.
Cell Rep ; 43(7): 114377, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38889005

RESUMEN

Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.


Asunto(s)
Adenosina Trifosfato , Neoplasias Óseas , Neoplasias de la Mama , Conexina 43 , Osteocitos , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/metabolismo , Animales , Osteocitos/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Conexina 43/metabolismo , Ratones , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Línea Celular Tumoral , Microambiente Tumoral , Anticuerpos/farmacología
9.
Research (Wash D C) ; 7: 0376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741604

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 Omicron variants still causes neurological complications in elderly individuals. However, whether and how aging brains are affected by Omicron variants in terms of neuroinvasiveness and neurovirulence are unknown. Here, we utilize resected paracarcinoma brain tissue from elderly individuals to generate primary brain spheroids (BSs) for investigating the replication capability of live wild-type (WT) strain and Omicron (BA.1/BA.2), as well as the mechanisms underlying their neurobiological effects. We find that both WT and Omicron BA.1/BA.2 are able to enter BSs but weakly replicate. There is no difference between Omicron BA.1/BA.2 and WT strains in neurotropism in aging BSs. However, Omicron BA.1/BA.2 exhibits ameliorating neurological damage. Transcriptional profiling indicates that Omicron BA.1/BA.2 induces a lower neuroinflammatory response than WT strain in elderly BSs, suggesting a mechanistic explanation for their attenuated neuropathogenicity. Moreover, we find that both Omicron BA.1/BA.2 and WT strain infections disrupt neural network activity associated with neurodegenerative disorders by causing neuron degeneration and amyloid-ß deposition in elderly BSs. These results uncover Omicron-specific mechanisms and cellular immune responses associated with severe acute respiratory syndrome coronavirus 2-induced neurological complications.

10.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788719

RESUMEN

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Asunto(s)
Glioblastoma , Glicoproteínas de Membrana , Receptores Inmunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Humanos , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
11.
Cell Rep ; 43(6): 114258, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38781073

RESUMEN

Transforming growth factor ß (TGF-ß) represents a well-established signal required for tissue-resident memory T cell (TRM) formation at intestinal surfaces, regulating the expression of a large collection of genes coordinately promoting intestinal TRM differentiation. The functional contribution from each TGF-ß-controlled transcription factor is not entirely known. Here, we find that TGF-ß-induced T-bet downregulation and Hic1 induction represent two critical events during intestinal TRM differentiation. Importantly, T-bet deficiency significantly rescues intestinal TRM formation in the absence of the TGF-ß receptor. Hic1 induction further strengthens TRM maturation in the absence of TGF-ß and T-bet. Our results reveal that provision of certain TGF-ß-induced molecular events can partially replace TGF-ß signaling to promote the establishment of intestinal TRMs, which allows the functional dissection of TGF-ß-induced transcriptional targets and molecular mechanisms for TRM differentiation.


Asunto(s)
Linfocitos T CD8-positivos , Mucosa Intestinal , Factores de Transcripción de Tipo Kruppel , Transducción de Señal , Proteínas de Dominio T Box , Animales , Ratones , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Memoria Inmunológica , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Factores de Transcripción de Tipo Kruppel/metabolismo , Células T de Memoria/metabolismo , Células T de Memoria/inmunología , Ratones Endogámicos C57BL , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
BMC Med ; 22(1): 172, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650037

RESUMEN

BACKGROUND: Lenvatinib is widely used in treatment of unresectable hepatocellular carcinoma (uHCC), but the benefit of its combination with immunotherapy needs to be verified. This study evaluated the efficacy and safety of tislelizumab plus lenvatinib in systemic treatment-naïve patients with uHCC. METHODS: In this multicenter, single-arm, phase 2 study, systemic treatment-naïve patients with uHCC received tislelizumab 200 mg every three weeks plus lenvatinib (bodyweight ≥ 60 kg: 12 mg; < 60 kg: 8 mg; once daily). Dose-limiting toxicities (DLTs) were evaluated in safety run-in phase to determine whether to enter the expansion phase. The primary endpoint was objective response rate (ORR) assessed by independent review committee (IRC) per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). Based on Simon's two-stage design, > 6 responders were needed in stage 1 (n = 30) to continue the study, and ≥ 18 responders were needed by the end of stage 2 (n = 60) to demonstrate statistical superiority to a historical control of lenvatinib monotherapy. RESULTS: Sixty-four patients were enrolled. No DLTs were reported. The study achieved statistical superiority (p = 0.0003) with 23 responders assessed by IRC per RECIST v1.1 in the first 60 patients of the efficacy evaluable analysis set (n = 62). After a median follow-up of 15.7 months, confirmed ORR and disease control rate were 38.7% (24/62, 95% confidence interval [CI], 26.6-51.9) and 90.3% (56/62, 95% CI, 80.1-96.4), respectively. Median progression-free survival was 8.2 months (95% CI, 6.8-not evaluable). Overall survival rate at 12 months was 88.6% (95% CI, 77.7-94.4). Grade ≥ 3 treatment-related adverse events occurred in 18 (28.1%) patients. CONCLUSIONS: Tislelizumab plus lenvatinib demonstrated promising antitumor activity with favourable tolerability as first-line therapy for patients with uHCC. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04401800).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Quinolinas/uso terapéutico , Quinolinas/efectos adversos , Quinolinas/administración & dosificación , Masculino , Neoplasias Hepáticas/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/efectos adversos , Compuestos de Fenilurea/administración & dosificación , Femenino , Persona de Mediana Edad , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Resultado del Tratamiento , Adulto
13.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594444

RESUMEN

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Asunto(s)
Glioblastoma , FN-kappa B , Células Madre Neoplásicas , Transducción de Señal , Macrófagos Asociados a Tumores , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , FN-kappa B/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Microambiente Tumoral
14.
Nat Cancer ; 5(7): 1024-1044, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38519786

RESUMEN

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.


Asunto(s)
Glioblastoma , Treonina , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Animales , Ratones , Treonina/metabolismo , Treonina/genética , Biosíntesis de Proteínas , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Codón/genética , ARN de Transferencia/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
15.
Neuroradiology ; 66(5): 785-796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38478062

RESUMEN

PURPOSE: This study aimed to investigate the diagnostic performance of diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in identifying aberrations in the corticospinal tract (CST), whilst elucidating the relationship between abnormalities of CST and patients' motor function. METHODS: Altogether 21 patients with WHO grade II or grade IV glioma were enrolled and divided into Group 1 and Group 2, according to the presence or absence of preoperative paralysis. DKI and DTI metrics were generated and projected onto the CST. Histograms of the CST along x, y, and z axes were developed based on DKI and DTI metrics, and compared subsequently to determine regions of aberrations on the fibers. The receiver operating characteristic curve was performed to investigate the diagnostic efficacy of DKI and DTI metrics. RESULTS: In Group 1, a significantly lower fractional anisotropy, radial kurtosis and mean kurtosis, and a higher mean diffusivity were found in the ipsilateral CST as compared to the contralateral CST. Significantly higher relative axial diffusivity, relative radial diffusivity, and relative mean diffusivity (rMD) were found in Group 1, as compared to Group 2. The relative volume of ipsilateral CST abnormalities higher than the maximum value of mean kurtosis combined with rMD exhibited the best diagnostic performance in distinguishing dysfunction of CST with an AUC of 0.93. CONCLUSION: DKI is sensitive in detecting subtle changes of CST distal from the tumor. The combination of DKI and DTI is feasible for evaluating the impairment of the CST.


Asunto(s)
Imagen de Difusión Tensora , Glioma , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Imagen de Difusión por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/patología , Curva ROC
16.
J Craniofac Surg ; 35(1): 228-232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37889070

RESUMEN

PURPOSE: The purpose of our study is to assess the clinical performance of the DiveScope, a novel handheld histopathologic microscope in rapidly differentiating glioma from normal brain tissue during neurosurgery. METHODS: Thirty-two ex vivo specimens from 18 patients were included in the present study. The excised suspicious tissue was sequentially stained with sodium fluorescein and methylene blue and scanned with DiveScope during surgery. The adjacent tissue was sent to the department of pathology for frozen section examination. They would eventually be sent to the pathology department later for hematoxylin and eosin staining for final confirmation. The positive likelihood ratio, negative likelihood ratio, sensitivity, specificity, and area under the curve of the device were calculated. In addition, the difference in time usage between DiveScope and frozen sections was compared for the initial judgment. RESULTS: The sensitivity and specificity of the DiveScope after analyzing hematoxylin and eosin -staining sections, were 88.29% and 100%, respectively. In contrast, the sensitivity and specificity of the frozen sections histopathology were 100% and 75%, respectively. The area under the curve of the DiveScope and the frozen sections histopathology was not significant ( P =0.578). Concerning time usage, DiveScope is significantly much faster than the frozen sections histopathology no matter the size of tissue. CONCLUSION: Compared with traditional pathological frozen sections, DiveScope was faster and displayed an equal accuracy for judging tumor margins intraoperatively.


Asunto(s)
Glioma , Humanos , Hematoxilina , Eosina Amarillenta-(YS) , Sensibilidad y Especificidad , Coloración y Etiquetado , Glioma/cirugía
17.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076957

RESUMEN

Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-ß signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.

18.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38056463

RESUMEN

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Asunto(s)
Neoplasias Encefálicas , Plexo Coroideo , Hidrocefalia , Mastocitos , Humanos , Neoplasias Encefálicas/secundario , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Hidrocefalia/metabolismo , Hidrocefalia/patología , Mastocitos/metabolismo , Mastocitos/patología , Triptasas/líquido cefalorraquídeo , Metástasis de la Neoplasia/patología
20.
Stem Cell Res Ther ; 14(1): 251, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705072

RESUMEN

Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.


Asunto(s)
Células Madre Hematopoyéticas , Mecanotransducción Celular , Adulto , Humanos , Embrión de Mamíferos , Diferenciación Celular , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...