Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475740

RESUMEN

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , Factores de Transcripción/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
2.
Cancer Immunol Immunother ; 72(10): 3293-3307, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37462763

RESUMEN

BACKGROUND: While epidemiological studies have established a firm link between circadian disruption and tumorigenesis, the role and mechanism are not fully understood, complicating the design of therapeutic targets related to circadian rhythms (CR). Here, we aimed to explore the intertumoral heterogeneity of CR and elucidate its impact on the tumor microenvironment (TME), drug sensitivity, and immunotherapy. METHODS: Based on unsupervised clustering of 28 CR genes, two distinct CR subtypes (cluster-A and cluster-B) were identified in the TCGA cohort. We further constructed a circadian rhythm signature (CRS) based on the CR genes primarily responsible for clustering to quantify CR activity and to distinguish CR subtypes of individual patients from external datasets. CR subtypes were evaluated by TME characteristics, functional annotation, clinical features, and therapeutic response. RESULTS: The cluster-B (low-CRS) group was characterized by highly enriched immune-related pathways, high immune cell infiltration, and high anti-tumor immunity, while the cluster-A (high-CRS) group was associated with immunosuppression, synaptic transmission pathways, EMT activation, poor prognosis, and drug resistance. Immunohistochemistry (IHC) results demonstrated that high CD8+ T cell infiltration was associated with low-CR-protein expression. Importantly, patients with low CRS were more likely to benefit from immune checkpoint blockade (ICB) treatment, possibly due to their higher tumor mutation burden (TMB), increased immune checkpoint expression, and higher proportion of "hot" immunophenotype. CONCLUSION: In a nutshell, the cross talk in CR could reflect the TME immunoreactivity in breast cancer. Besides providing the first comprehensive pathway-level analysis of CR in breast cancer, this work highlights the potential clinical utility of CR for immunotherapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Inmunoterapia , Terapia de Inmunosupresión , Linfocitos T CD8-positivos , Carcinogénesis , Microambiente Tumoral , Pronóstico
3.
J Mol Endocrinol ; 70(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356262

RESUMEN

The pathogenesis of nonalcoholic steatohepatitis (NASH), a severe stage of nonalcoholic fatty liver disease, is complex and implicates multiple cell interactions. However, therapies for NASH that target multiple cell interactions are still lacking. Melatonin (MEL) alleviates NASH with mechanisms not yet fully understood. Thus, we herein investigate the effects of MEL on key cell types involved in NASH, including hepatocytes, macrophages, and stellate cells. In a mouse NASH model with feeding of a methionine and choline-deficient (MCD) diet, MEL administration suppressed lipid accumulation and peroxidation, improved insulin sensitivity, and attenuated inflammation and fibrogenesis in the liver. Specifically, MEL reduced proinflammatory cytokine expression and inflammatory signal activation and attenuated CD11C+CD206- M1-like macrophage polarization in the liver of NASH mice. The reduction of proinflammatory response by MEL was also observed in the lipopolysaccharide-stimulated Raw264.7 cells. Additionally, MEL increased liver fatty acid ß-oxidation, leading to reduced lipid accumulation, and restored the oleate-loaded primary hepatocytes. Finally, MEL attenuated hepatic stellate cell (HSC) activation and fibrogenesis in the liver of MCD-fed mice and in LX-2 human HSCs. In conclusion, MEL acts on multiple cell types in the liver to mitigate NASH-associated phenotypes, supporting MEL or its analog as potential treatment for NASH.


Asunto(s)
Melatonina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metionina/metabolismo , Metionina/farmacología , Dieta , Modelos Animales de Enfermedad , Colina/metabolismo , Colina/farmacología , Lípidos
4.
Nutr Diabetes ; 12(1): 42, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207302

RESUMEN

BACKGROUNDS/OBJECTIVES: Melatonin promotes brown adipose tissue (BAT) activity, leading to body mass reduction and energy expenditure. However, the mechanisms governing these beneficial effects are not well-established. This study aimed to assess the effects of (1) melatonin on BAT and energy metabolism, and (2) fibroblast growth factor 21 (FGF21) in BAT-mediated thermogenesis. METHODS: Male C57BL/6 J mice received a high-fat diet (HFD) or normal chow, accompanied by intraperitoneal injection of 20 mg/kg melatonin for 12 weeks. FGF21-/- mice consumed an HFD with or without melatonin for 8 weeks. RESULTS: Melatonin attenuated weight gain, insulin resistance, adipocyte hypertrophy, inflammation, and hepatic steatosis induced by the HFD and increased energy expenditure. Furthermore, melatonin improved cold tolerance by increasing BAT uncoupling protein 1 (UCP1) expression and producing heat. Notably, melatonin resulted in a shift in energy metabolism favouring the utilization of fat, and it increased FGF21 in circulating and metabolic tissues and skeletal muscle phosphorylation of AMP-activated protein kinase. However, melatonin did not protect against obesity, insulin resistance, and energy expenditure in HFD-fed FGF21-/- mice. CONCLUSIONS: Melatonin suppressed obesity and insulin resistance resulting from the HFD by enhancing BAT activity and energy expenditure, and these effects were dependent on FGF21.


Asunto(s)
Resistencia a la Insulina , Melatonina , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Lipólisis , Masculino , Melatonina/metabolismo , Melatonina/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 131-142, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36305727

RESUMEN

Obesity is a risk factor for many metabolic diseases. Efficient therapeutic strategies are urgently needed. Swertiamarin (STM) prevents obesity and the associated insulin resistance and inflammation. However, the therapeutic effects of STM on preexisting obesity remain unclear. Therefore, in this study we aim to investigate the effects of STM on energy expenditure and fat browning in mice with preexisting obesity. C57BL/6J mice are fed with a high-fat diet (HFD) for 8 weeks to induce obesity and then gavaged (or not) with STM for 10 weeks. The whole-body energy metabolism of mice is examined by indirect calorimetry. The results show that after 10 weeks of treatment, STM markedly prevents HFD-induced weight gain, chronic inflammation, insulin resistance, and hepatic steatosis. STM promotes oxygen consumption and energy expenditure. The level of uncoupling protein 1 is enhanced in the brown and white adipose tissues of STM-treated mice. STM increases the phosphorylation of AMP-activated protein kinase and the expressions of genes involved in fat oxidation, reducing fat deposition in skeletal muscles. Meanwhile, STM does not affect the intestinal microbiotic composition. Overall, STM supplementation may serve as a potential therapy for obesity.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Ratones Obesos , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Estrés Oxidativo , Tejido Adiposo Pardo/metabolismo
6.
Medicina (Kaunas) ; 58(6)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744053

RESUMEN

Background and Objectives: Oxidative stress is implicated in the progression of nonalcoholic steatohepatitis (NASH) through the triggering of inflammation. Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species (ROS)-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-) PUFAs. Here, we aimed to investigate the impacts of D-PUFAs on oxidative stress and its protective effect on NASH. Materials and Methods: C57BL/6 mice were randomly divided into three groups and were fed a normal chow diet, a methionine-choline-deficient (MCD) diet, and an MCD with 0.6% D-PUFAs for 5 weeks. The phenotypes of NASH in mice were determined. The levels of oxidative stress were examined both in vivo and in vitro. Results: The treatment with D-PUFAs attenuated the ROS production and enhanced the cell viability in tert-butyl hydroperoxide (TBHP)-loaded hepatocytes. Concurrently, D-PUFAs decreased the TBHP-induced oxidative stress in Raw 264.7 macrophages. Accordingly, D-PUFAs increased the cell viability and attenuated the lipopolysaccharide-stimulated proinflammatory cytokine expression of macrophages. In vivo, the administration of D-PUFAs reduced the phenotypes of NASH in MCD-fed mice. Specifically, D-PUFAs decreased the liver transaminase activity and attenuated the steatosis, inflammation, and fibrosis in the livers of NASH mice. Conclusion: D-PUFAs may be potential therapeutic agents to prevent NASH by broadly reducing oxidative stress.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Deuterio , Dieta , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/farmacología , Inflamación/tratamiento farmacológico , Hígado/metabolismo , Metionina/farmacología , Metionina/uso terapéutico , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
7.
Nat Neurosci ; 22(2): 180-190, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643298

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Femenino , Humanos , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Poliadenilación , Médula Espinal/metabolismo , Médula Espinal/patología , Estatmina
8.
Analyst ; 142(7): 1084-1090, 2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-28265609

RESUMEN

Inspired by the primitive role of lipopolysaccharide (LPS) and taking advantage of the membrane-philic properties of amphiphilic gold nanoparticles (AuNPs), we established a facile and efficient fluorescence turn-on detection strategy for LPS. Upon binding onto the surface of liposomes, LPS can tailor the accessibility of liposomes towards AuNPs, reminiscent of its primitive function on the surface of bacteria. Thus, while the fluorescence of the dyes labeled on liposomes can be markedly quenched by the membrane-philic AuNPs, the quenching effect can be efficiently prevented by the surface-bound LPS. The de-quenching effect is highly selective to LPS, relative to other negatively charged bio-analytes, which is due to not only the extremely high affinity of LPS to lipid bilayers, but also the unique molecular structure of LPS. Furthermore, this easy-to-construct method offers a limit of detection of ∼0.65 nM, which is comparable to that obtained from the superb synthetic sensors for LPS reported in the literature. This study would open up a new route for the design of sensing systems for LPS exploiting its unique structural pattern and primitive function.

9.
Langmuir ; 32(6): 1601-10, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26794292

RESUMEN

The presence of large hydrophobic aromatic residues in cell-penetrating peptides or proteins has been demonstrated to be advantageous for their cell penetration. This phenomenon has also been observed when AuNPs were modified with peptides containing aromatic amino acids. However, it is still not clear how the presence of hydrophobic and aromatic groups on the surface of anionic AuNPs affects their interaction with lipid bilayers. Here, we studied the interaction of a range of anionic amphiphilic AuNPs coated by different combinations of hydrophobic and anionic ligands with four different types of synthetic lipid vesicles. Our results demonstrated the important role of the surface aromatic or bulky groups, relative to the hydrocarbon chains, in the interaction of anionic AuNPs with lipid bilayers. Hydrophobic interaction itself arising from the insertion of aromatic/bulky ligands on the surface of AuNPs into lipid bilayers is sufficiently strong to cause overt disruption of lipid vesicles and cell membranes. Moreover, by comparing the results obtained from AuNPs coated with aromatic ligands and cyclohexyl ligands lacking aromaticity respectively, we demonstrated that the bulkiness of the terminal groups in hydrophobic ligands instead of the aromatic character might be more important to the interaction of AuNPs with lipid bilayers. Finally, we further correlated the observation on model liposomes with that on cell membranes, demonstrating that AuNPs that are more disruptive to the more negatively charged liposomes are also substantially more disruptive to cell membranes. In addition, our results revealed that certain cellular membrane domains that are more susceptible to disruption caused by hydrophobic interactions with nanoparticle surfaces might determine the threshold of AuNP-mediated cytotoxicity.


Asunto(s)
Oro/química , Membrana Dobles de Lípidos/química , Liposomas/química , Nanopartículas del Metal/química , Tensoactivos/química , Dispersión Dinámica de Luz , Ácidos Grasos/química , Fluoresceínas , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Metilaminas/química , Ácidos Oléicos/química , Fosfatidilcolinas , Compuestos de Sulfhidrilo/química , Propiedades de Superficie , Triptaminas/química
10.
Environ Sci Pollut Res Int ; 20(12): 8871-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23749367

RESUMEN

Excessive inputs of nitrogen and phosphorus (N and P) degrade surface water quality worldwide. Impoundment of reservoirs alters the N and P balance of a basin. In this study, riverine nutrient loads from the upper Yangtze River basin (YRB) at the Yichang station were estimated using Load Estimator (LOADEST). Long-term load trends and monthly variabilities during three sub-periods based on the construction phases of the Three Gorges Dam (TGD) were analyzed statistically. The dissolved inorganic nitrogen (DIN) loads from the upper YRB for the period from 1990 to 2009 ranged from 30.47 × 10(4) to 78.14 × 10(4) t, while the total phosphorus (TP) loads ranged from 2.54 × 10(4) to 7.85 × 10(4) t. DIN increased rapidly from 1995 to 2002 mainly as a result of increased fertilizer use. Statistics of fertilizer use in the upper YRB agreed on this point. However, the trend of the TP loads reflected the combined effect of removal by sedimentation in reservoirs and increased anthropogenic inputs. After the TGD impoundment in 2003, decreasing trends in both DIN and TP loads were found. The reduction in DIN was mainly caused by ammonium consumption and transference. From an analysis of monthly loads, it was found that DIN had a high correlation to discharges. For TP loads, an average decrease of 4.91 % in October was found when the TGD impoundment occurred, but an increase of 4.23 % also occurred in July, corresponding to the washout from sediment deposited in the reservoir before July. Results of this study revealed the TGD had affected nutrient loads in the basin, and it had played a role in nutrient reduction after its operation.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , China , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA