Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Small ; : e2308277, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044301

RESUMEN

Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2 ) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2 . Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.

3.
Nano Lett ; 23(8): 3623-3629, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043360

RESUMEN

Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.

4.
Biosens Bioelectron ; 218: 114741, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209531

RESUMEN

Light-driven proton directional transport is important in living beings as it could subtly realize the light energy conversion for living uses. In the past years, 2D materials-based nanochannels have shown great potential in active ion transport due to controllable properties, including surface charge distribution, wettability, functionalization, electric structure, and external stimuli responsibility, etc. However, to fuse the inorganic materials into bio-membranes still faces several challenges. Here, we proposed peptide-modified WS2 nanosheets via cysteine linkers to realize tunable band structure and, hence, enable light-driven proton transmembrane transport. The modification was achieved through the thiol chemistry of the -SH groups in the cysteine linker and the S vacancy on the WS2 nanosheets. By tuning the amino residues sequences (lysine-rich peptides, denoted as KFC; and aspartate-rich peptides, denoted as DFC), the ζ-potential, surface charge, and band energy of WS2 nanosheets could be rationally regulated. Janus membranes formed by assembling the peptide-modified WS2 nanosheets could realize the proton transmembrane transport under visible light irradiation, driven by a built-in potential due to a type II band alignment between the KFC-WS2 and DFC-WS2. As a result, the proton would be driven across the formed nanochannels. These results demonstrate a general strategy to build bio-semiconductor materials and provide a new way for embedding inorganic materials into biological systems toward the development of bioelectronic devices.


Asunto(s)
Técnicas Biosensibles , Protones , Cisteína , Ácido Aspártico , Lisina , Transporte Iónico , Semiconductores , Péptidos
5.
J Colloid Interface Sci ; 621: 385-397, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35468559

RESUMEN

Polyurethane (PU) composites integrated with outstanding fire retardancy, smoke suppression as well as ameliorated mechanical property is attractive, but remains a challenge. Here, we demonstrate the interfacial architecting of organic-inorganic hybrid (ACAPP) by reacting renewable chitooligosaccharide (COS) with ammonium polyphosphate (APP) and ammonium octamolybdate (AOM) via a one-pot, facile and eco-friendly approach. The ACAPP with multiple hydroxyl groups shows good compatibility and strong interfacial adhesion force with PU matrix due to the abundant covalent cross-linking points and hydrogen bonds networks. The incorporation of 15 wt% ACAPP enables the resultant PU composite to achieve a V-0 rating, a limiting oxygen index of 26.1%, 31.1% and 44.8% reduction in total heat release and total smoke production, respectively, far outdistancing conventional APP. The suppressed fire hazards mainly benefits from the synergy catalytic carbonization effect of ACAPP in condensed phase. Moreover, ACAPP reinforces the tensile strength of PU whilst retaining the decent ultimate elongation. This work may offer a referable exemplification for constructing green flame-retardant to balance high fire safety and mechanical properties.


Asunto(s)
Compuestos de Amonio , Retardadores de Llama , Compuestos de Amonio/química , Polifosfatos/química , Poliuretanos/química , Humo
6.
J Phys Chem Lett ; 13(4): 1107-1113, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35080410

RESUMEN

Hydrogenated borophenes─borophanes─have recently been synthesized as a new platform for studying low-dimensional borides, but most of their lattice structures remain unknown. Here, we determine the structures of borophane polymorphs on Ag(111) by performing extensive structural search using the cluster expansion method augmented with first-principles calculations. Our results reveal rich borophane polymorphs whose stability depends on hydrogen pressure. At relatively low hydrogen pressures, borophane structures with rhombic patterns of two-center-two-electron B-H bonds are energetically preferred, in excellent agreement with two experimentally observed phases. In a wider range of hydrogen pressures, the structure with a combination of two-center-two-electron B-H and three-center-two-electron B-H-B bonds is a deep global minimum, rationalizing its experimental prevalence. For all these borophane polymorphs, their hydrogen "skin" raises the energy barriers for oxidation above 1.1 eV, while their work functions can be reduced by more than 0.5 eV through varying the hydrogen coverage.

7.
ACS Appl Mater Interfaces ; 13(41): 48661-48668, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34619966

RESUMEN

Efficient and robust electrocatalysts are required for the oxygen evolution reaction (OER). Photosystem II-inspired synthetic transition metal complexes have shown promising OER activity in water-poor or mild conditions, yet challenges remain in the improvement of current density and performance stability for practical applications in alkaline electrolytes in contrast to solid-state oxide catalysts. Here, we report that a nickel pseudo-complex (bpy)zNiOxHy (bpy = 2,2'-bipyridine) catalyst, which bridges solid oxide and molecular catalysts, exhibits the highest OER activity among nickel-based catalysts with a turnover frequency of 1.1 s-1 at an overpotential of 0.30 volts, even outperforming iron-incorporated nickel (oxy)hydroxide under an identical nickel mass load. Benefiting from the strong coordination between bpy and nickel, this (bpy)zNiOxHy catalyst exhibits long-term stability in highly alkaline media at 1.0 mA cm-2 for over 200 h and at 20 mA cm-2 for over 60 h. Our findings indicate that dynamically coordinating a small amount of bpy in the catalyst layer efficiently sustains highly active nickel sites for water oxidation, demonstrating a general strategy for improving the activity of transition metal sites with active ligands beyond the incorporation of metal cations to form double-layered hydroxides.

8.
Polymers (Basel) ; 13(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070588

RESUMEN

As a novel polymer, polyurethane (PU) has been widely applied in leather, synthetic leather, and textiles due to its excellent overall performance. Nevertheless, conventional PU is flammable and its combustion is accompanied by severe melting and dripping, which then generates hazardous fumes and gases. This defect limits PU applications in various fields, including the leather industry. Hence, the development of environmentally friendly, flame-retardant PU is of great significance both theoretically and practically. Currently, phosphorus-nitrogen (P-N) reactive flame-retardant is a hot topic in the field of flame-retardant PU. Based on this, the preparation and flame-retardant mechanism of flame-retardant PU, as well as the current status of flame-retardant PU in the leather industry were reviewed.

9.
ACS Omega ; 5(42): 27413-27424, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33134704

RESUMEN

In conventional lime calcination processes, because of fuel combustion in the kiln, the carbon dioxide (CO2) from limestone decomposition is mixed with the flue gas, which results in energy requirement for gas separation in the carbon capture process. Here, a novel lime calcination system with carrier gas (CO2) heating and air cooling is proposed to avoid the mixing problem of the CO2 and the flue gas. This system consists of a new shaft kiln with four processing zones and a furnace system, where fuel combustion, limestone reaction, and lime cooling are carried out separately. Therefore, while obtaining qualified lime products, the CO2 from limestone decomposition can be captured without a gas separation process, which accounts for 70% of the total carbon emission in lime production. Furthermore, a thermal-mass balance model was developed for the new system. Based on the model calculation, the energy consumption level of the new system was clarified via a case study. Moreover, parametric analyses were performed to examine the influence of the coefficient of excess air, the coefficient of lost carrier gas, and the calorific value of coal gas on the system performance such as the energy consumption and the CO2 captured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...