Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(23): e0150922, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36377958

RESUMEN

The initial growth rate of a yeast strain is a key parameter in the production of fermented beverages. Fast growth is linked with higher fermentative capacity and results in less slow and stuck fermentations unable to reach the expected final gravity. As concentrations of metabolites are in a constant state of flux, quantitative data on how growth rate affects the production of aromatic compounds becomes an important factor for brewers. Chemostats allow to set and keep a specific dilution rate throughout the fermentation and are ideal system to study the effect of growth on aroma production. In this study, we ran chemostats alongside batch and fed-batch cultures, compared volatile profiles detected at different growth rates, and identified those affected by the different feeding profiles. Specifically, we quantified six abundant aroma compounds produced in anaerobic glucose-limited continuous cultivations of S. cerevisiae at different dilution rates. We found that volatile production was affected by the growth rate in four out of six compounds assayed, with higher alcohols and esters following opposite trends. Batch and fed-batch fermentations were devised to study the extent by which the final concentration of volatile compounds is influenced by glucose availability. Compared with the batch system, fed-batch fermentations, where the yeast growth was artificially limited by a slow constant release of nutrients in the media, resulted in a significant increase in concentration of higher alcohols, mirroring the results obtained in continuous fermentations. This study paves the way to further process development optimization for the production of fermented beverages. IMPORTANCE The production of fermentation beverages will need to quickly adapt to changes in both the climate and customer demands, requiring the development of new strains and processes. Breakthroughs in the field are hindered by the limited knowledge on the interplay between physiology and aroma compound production in yeast. No quantitative data on how growth rate affects aroma profile is available in the literature to guide optimization of the complex flavors in fermented beverages. In this study, we exploited the chemostat system, alongside with batch and fed-batch cultures, to compare volatile profiles at different growth rates. We identified the aromatic compounds affected by the different feeding profiles and nutrient limitations. Moreover, we uncovered the correlation between yeast growth, esters, and higher alcohols production. This study showcases the potential of the application of feeding profiles for the manipulation of aroma in the craft beverage industry.


Asunto(s)
Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Saccharomyces cerevisiae/metabolismo , Odorantes , Fermentación , Técnicas de Cultivo Celular por Lotes , Alcoholes/metabolismo , Glucosa/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
2.
Yeast ; 39(10): 535-547, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36127846

RESUMEN

The yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and have acquired traits from the combined parental genomes such as ability to ferment a range of sugars at low temperatures and to produce aromatic flavour compounds, allowing for the production of lager beers with crisp, clean flavours. The polyploid strains are sterile and have reached an evolutionary bottleneck for genetic variation. Here we describe an accelerated evolution approach to obtain lager yeasts with enhanced flavour profiles. As the relative expression of orthologous alleles is a significant contributor to the transcriptome during fermentation, we aimed to induce genetic variation by altering the S. cerevisiae to S. eubayanus chromosome ratio. Aneuploidy was induced through the temporary inhibition of the cell's stress response and strains with increased production of aromatic amino acids via the Shikimate pathway were selected by resistance to amino acid analogues. Genomic changes such as gross chromosomal rearrangements, chromosome loss and chromosome gain were detected in the characterised mutants, as were single-nucleotide polymorphisms in ARO4, encoding for DAHP synthase, the catalytic enzyme in the first step of the Shikimate pathway. Transcriptome analysis confirmed the upregulation of genes encoding enzymes in the Ehrlich pathway and the concomitant increase in the production of higher alcohols and esters such as 2-phenylethanol, 2-phenylethyl acetate, tryptophol, and tyrosol. We propose that the polyploid nature of S. pastorianus genomes is an advantageous trait supporting opportunities for genetic alteration in otherwise sterile strains.


Asunto(s)
Alcohol Feniletílico , Saccharomyces cerevisiae , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Aminoácidos/metabolismo , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo , Cerveza , Fermentación , Genoma Fúngico , Genómica , Macrólidos , Alcohol Feniletílico/metabolismo , Poliploidía , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azúcares/metabolismo
3.
Anal Chem ; 94(4): 1941-1948, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050571

RESUMEN

Detector and column saturations are problematic in comprehensive two-dimensional gas chromatography (GC×GC) data analysis. This limits the application of GC×GC in metabolomics research. To address the problems caused by detector and column saturations, we propose a two-stage data processing strategy that will incorporate a targeted data processing and cleaning approach upstream of the "standard" untargeted analysis. By using the retention time and mass spectrometry (MS) data stored in a library, the annotation and quantification of the targeted saturated peaks have been significantly improved. After subtracting the nonperfected signals caused by saturation, peaks of coelutes can be annotated more accurately. Our research shows that the target-guided method has broad application prospects in the data analysis of GC×GC chromatograms of complex samples.


Asunto(s)
Metabolómica , Fenómenos Químicos , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Fenómenos Físicos
4.
Food Microbiol ; 100: 103838, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416971

RESUMEN

Hybridisation is an important evolutionary mechanism to bring about novel phenotypes and may produce new hybrids with advantageous combinations of traits of industrial importance. Within the Saccharomyces genus, Saccharomyces jurei is a newly discovered species and its biotechnological potential has not yet been fully explored. This yeast was found to be able to grow well in unhopped wort and at low temperatures, qualities necessary in good candidates for fermented bevarages. Here, we analysed its fermentation and aroma profile and created novel non-GMO hybrids between S. jurei and S. cerevisiae ale yeasts to develop new starter strains with interesting flavours for the craft brewing and beverage industry in general. Pilot beer fermentations with specific hybrids showed a good fermentation performance, similar to the ale parent strain, while eliminating the hyper-attenuation characteristic and a more complex flavour profile. This study exploits the genetic diversity of yeasts and shows how inter-specific hybridisation and clone selection can be effectively used in brewing to create new products and to eliminate or increase specific traits.


Asunto(s)
Cerveza/análisis , Saccharomyces/genética , Saccharomyces/metabolismo , Cerveza/microbiología , Fermentación , Aromatizantes/análisis , Aromatizantes/metabolismo , Microbiología de Alimentos , Humanos , Hibridación Genética , Odorantes/análisis , Saccharomyces/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Gusto
5.
FEMS Yeast Res ; 21(5)2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34227660

RESUMEN

Beer is one of the most popular beverages in the world and it has an irreplaceable place in culture. Although invented later than ale, lager beers dominate the current market. Many factors relating to the appearance (colour, clarity and foam stability) and sensory characters (flavour, taste and aroma) of beer, and other psychological determinants affect consumers' perception of the product and defines its drinkability. This review takes a wholistic approach to scrutinise flavour generation in the brewing process, focusing particularly on the contribution of the raw ingredients and the yeasts to the final flavour profiles of lager beers. In addition, we examine current developments to improve lager beer flavour profiles for the modern consumers.


Asunto(s)
Cerveza , Saccharomyces , Cerveza/análisis , Fermentación , Aromatizantes , Odorantes , Levaduras
6.
Metabolomics ; 16(10): 102, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32949264

RESUMEN

INTRODUCTION: Aromas and tastes have crucial influences on the quality of fermented beverages. The determination of aromatic compounds requires global non-targeted profiling of the volatile organic compounds (VOCs) in the beverages. However, experimental VOC profiling result depends on the chosen VOC collection method. OBJECTIVES: This study aims to observe the impact of using different sample preparation techniques [dynamic headspace (DHS), vortex-assisted liquid-liquid microextraction (VALLME), multiple stir bar sorptive extraction (mSBSE), solid phase extraction (SPE), and solid phase micro-extraction (SPME)] to figure out the most suitable sample preparation protocol for profiling the VOCs from fermented beverages. METHODS: Five common sample preparation methods were studied with beer, cider, red wine, and white wine samples. After the sample preparation, collected VOCs were analyzed by two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCxGC-TOFMS). RESULTS: GCxGC oven parameters can be optimized with the Box-Behnken surface response model and response measure on peak dispersion. Due to the unavoidable column and detector saturation during metabolomic analysis, errors may happen during mass spectrum construction. Profiling results obtained with different sample preparation methods show considerable variance. Common findings occupy a small fraction of total annotated VOCs. For known fermentative aromas, best coverage can be reached by using SPME together with SPE for beer, and VALLME for wine and cider. CONCLUSIONS: GCxGC-TOFMS is a promising tool for non-targeted profiling on VOCs from fermented beverages. However, a proper data processing protocol is lacking for metabolomic analysis. Each sample preparation method has a specific profiling spectrum on VOC profiling. The coverage of the VOC metabolome can be improved by combining complementary methods.


Asunto(s)
Alimentos Fermentados/análisis , Manejo de Especímenes/métodos , Compuestos Orgánicos Volátiles/análisis , Fermentación/fisiología , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA