Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38398919

RESUMEN

Acoustically actuated magnetoelectric (ME) antennas utilize acoustic wave resonance to complete the process of receiving and transmitting signals, which promotes the development of antenna miniaturization technology. This paper presents a bilayer magnetostrictive/AlN ME laminated antenna. The proposed laminated antenna uses the FeGa/FeGaB bilayer materials as magnetostrictive materials, which combine the advantages of soft magnetic properties of FeGa and the low loss of FeGaB. First, multiphysics modeling and analysis are performed for the proposed ME laminated antenna by finite element method (FEM). The positive/inverse ME effects and the influences of the volume ratio of the FeGa/FeGaB bilayer on the antenna performance are studied. The results show that the output voltage and ME coefficient of the FeGa/FeGaB bilayer magnetostrictive material with a volume ratio of 1:1 are 3.97 times and 195.8% higher than that of the single FeGaB layer, respectively. The eddy current loss is 52.08% lower than that of single-layer FeGa. According to the surface equivalence principle, the far-field radiation process is simulated. The results show that the gain of the ME antenna is 15 dB larger than that of the same-size micro-loop antenna, and the gain of the ME antenna is about -44.9 dB. The improved performance and magnetic tunability of the proposed bilayer magnetostrictive materials make ME antennas excellent candidates for portable devices and implantable medical devices.

2.
Micromachines (Basel) ; 14(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38138374

RESUMEN

This paper presents an advanced method that combines coupling-of-modes (COM) theory and the finite element method (FEM), which enables the quick extraction of COM parameters and the accurate prediction of the electroacoustic and temperature behavior of surface acoustic wave (SAW) devices. For validation, firstly, the proposed method is performed for a normal SAW resonator. Then, the validated method is applied to analysis of an I.H.P. SAW resonator based on a 29°YX-LT/SiO2/SiC structure. Via optimization, the electromechanical coupling coefficient (K2) is increased up to 13.92% and a high quality (Q) value of 1265 is obtained; meanwhile, the corresponding temperature coefficient of frequency (TCF) is -10.67 ppm/°C. Furthermore, a double-mode SAW (DMS) filter with low insertion loss and excellent temperature stability is also produced. It is demonstrated that the proposed method is effective even for SAW devices with complex structures, providing a useful tool for the design of SAW devices with improved performance.

3.
Micromachines (Basel) ; 14(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37893378

RESUMEN

This paper presents a Piezoelectric micromechanical ultrasonic transducer (PMUT) based on a Pt/ScAlN/Mo/SiO2/Si/SiO2/Si multilayer structure with a circular suspension film of scandium doped aluminum nitride (ScAlN). Multiphysics modeling using the finite element method and analysis of the effect of different Sc doping concentrations on the resonant frequency, the effective electromechanical coupling coefficient (keff2) and the station sensitivity of the PMUT cell are performed. The calculation results show that the resonant frequency of the ScAlN-based PMUT can be above 20 MHz and its keff2 monotonically rise with the increasing doping concentrations in ScAlN. In comparison to the pure AlN thin film-based PMUT, the static receiving sensitivity of the PMUT based on ScAlN thin film with 35% Sc doping concentration is up to 1.61 mV/kPa. Meanwhile, the static transmitting sensitivity of the PMUT is improved by 152.95 pm/V. Furthermore, the relative pulse-echo sensitivity level of the 2 × 2 PMUT array based on the Sc doping concentration of 35% AlN film is improved by 16 dB compared with that of the cell with the same Sc concentration. The investigation results demonstrate that the performance of PMUT on the proposed structure can be tunable and enhanced by a reasonable choice of the Sc doping concentration in ScAlN films and structure optimization, which provides important guidelines for the design of PMUT for practical applications.

4.
Food Chem ; 421: 136218, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37105120

RESUMEN

To improve the quality of autoclaved recooked noodles (ARNs), this study explored the effects of precooking on the sensory and tensile properties of ARNs from the perspectives of changes in protein structure and water distribution. The results showed that the ARNs of two kinds of pretreatments (Boiling 2 min, Boiling 1 min + Steaming 2 min) presented the best sensory quality (average score ≥ 7.50) and high tensile properties (tensile distance ≥ 45.24 mm). After autoclaving and recooking, the proportion of tightly bound water increased by 11.30%-12.52%, resulting in stronger water-solid interaction. The results of laser confocal microscopy (CLSM) proved that a strengthened gluten network (protein percentage area ≥ 40.28%; junction density ≥ 10.96 × 10-4) appeared. Therefore, appropriate precooking treatment could effectively improve the sensory quality and tensile properties of ARNs by enhancing the tightly bound water ratio and strengthening the gluten network.


Asunto(s)
Calidad de los Alimentos , Glútenes , Glútenes/química , Harina/análisis , Agua/química , Vapor
5.
Food Res Int ; 168: 112641, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120180

RESUMEN

The content of bioactive components is the key to determining the quality of Ganoderma lucidum fermented whole wheat (GW) products, and drying is a necessary link in the initial processing of GW, which will affect the bioactivity and quality of GW. This paper was to assess the effect of hot air drying (AD), freeze drying (FD), vacuum drying (VD) and microwave drying (MVD) on the content of bioactive substances and the characteristics of digestion and absorption of GW. The results showed that FD, VD and AD were beneficial to the retention of unstable substances such as adenosine, polysaccharide and triterpenoid active components in GW, and their contents were 3.84-4.66 times, 2.36-2.83 times and 1.15-1.22 times of MVD, respectively. The bioactive substances in GW were released during digestion. The bioavailability of polysaccharides in the MVD group (419.91 %) was significantly higher than that in the FD, VD and AD groups (68.74 %-78.92 %), but their bioaccessibility (5.66 %) was lower than that in the FD, VD and AD groups (33.41 %-49.69 %). Principal component analysis (PCA) showed that VD is more suitable for GW drying due to the comprehensive performance of 3 aspects in terms of active substance retention, bioavailability and sensory quality.


Asunto(s)
Reishi , Triticum , Desecación/métodos , Liofilización , Fenómenos Químicos
6.
Food Chem ; 400: 134070, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36084595

RESUMEN

Ellagitannins, the main components of walnut kernel polyphenols, are easily degraded by heating to produce ellagic acid, precursor in the production of urolithins that show multiple physiological functions. To analyze the conversion of ellagitannins to free ellagic acid in walnut kernels during baking, a quantitative method was developed to investigate the ellagic acid content (EAC) in free phenolic acid (FPA), acid-hydrolyzable phenolic acid (AHPA), and bound phenolic acid (BPA) fractions. The results showed that the EAC in FPA reached its maximum (5.17 ± 0.30 mg/g DW) after baking at 165 °C for 30 min, which increased by 99.52% compared with the control. Meanwhile, the content of ellagitannins (ETC) in AHPA and BPA dropped by 89.14% and 26.08%, respectively. It suggested that baking promoted the conversion of ellagitannins in AHPA and BPA to ellagic acid in FPA. Eight ellagitannins were regarded as the main precursors of ellagic acid in walnut kernels.


Asunto(s)
Ácido Elágico , Juglans , Ácido Elágico/metabolismo , Taninos Hidrolizables/metabolismo , Hidroxibenzoatos , Juglans/metabolismo
7.
Micromachines (Basel) ; 15(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276840

RESUMEN

SAW devices with a multi-layered piezoelectric substrate have excellent performance due to advantages such as a high quality factor, Q, low loss insertion, large bandwidth, etc. Prior to manufacturing, a comprehensive analysis and proper design are essential to evaluating the device's key performance indicators, including the Bode Q value, bandwidth, and transverse mode suppression. This study explored the performance of SAW resonators employing a 42°Y-X LiTaO3 (LT) thin-plate-based multi-layered piezoelectric substrate. The thicknesses for each layer of the 42°Y-X LT/SiO2/poly-Si/Si substrate were optimized according to the index of phase velocity, Bode Q value, and bandwidth. The effect of the device structure parameters on the dispersion curve and slowness curve was studied, and a flat slowness curve was found to be favorable for transverse mode suppression. In addition, the design of the dummy configuration was also optimized for the suppression of spurious waves. Based on the optimized design, a one-port resonator on the 42°Y-X LT/SiO2/poly-Si/Si substrate was fabricated. The simulation results and measurements are presented and compared, which provides guidelines for the design of new types of SAW devices configured with complex structures.

8.
PLoS One ; 17(12): e0277553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36490297

RESUMEN

A new virtual synchronous generator (VSG) control strategy was researched and proposed for a VSC-HVDC (High Voltage Direct Current Based on Voltage Source Converter) transmission system. It can be applied to half-bridge or full-half-bridge hybrid topology modular multi-level converter (MMC) to improve the stability and reliability of the system. First, it is proposed that the energy stored in the equivalent capacitor of MMC power module was used to imitate the rotor inertial of synchronous generator. It can buffer transient power fluctuations and synchronize autonomously with the grid. Then the impedance characteristics of the proposed control method have been deduced and analyzed. The results show that the VSG control loop mainly improves the low frequency characteristics of the converter. Secondly, the ability to suppress transient fault current is weak. So, a method, that the given values of inner current loop are calculated by grid impedance matrix, was used. A double closed loop control structure composed by a power outer loop based on VSG control and a current inner loop is obtained. The simulation results show that it can effectively improve the current control capability during the transient process for systems with a 1:2 ratio of converter capacity to grid capacity (The grid short-circuit capacity is 60MW and the MMC is 30 MW). Finally, a hybrid MMC simulation model was built based on PSCAD and the steady-state and transient fault ride-through simulations were performed. The power adjustment time of MMC under the proposed VSG control is about 1s, while the adjustment time under the conventional control strategy is greater than 4s.


Asunto(s)
Suministros de Energía Eléctrica , Modelos Teóricos , Reproducibilidad de los Resultados , Electricidad , Simulación por Computador
9.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888932

RESUMEN

This article presents a general-purpose model that enables efficient and accurate calculation of third-order nonlinear signals in surface acoustic wave (SAW) devices. This model is based on piezoelectric constitutive equations combined with perturbation theory, which can be analyzed by full finite element method (FEM). For validation, third-order harmonic (H3) responses and intermodulation distortions (IMD3) in SAW resonators are simulated, and their calculation results fit well to experimental data in the literature. Then, the generation mechanisms of the third-order nonlinearity in SAW resonators are discussed. The dominant generation mechanisms for different nonlinear signals and the relation between electrode materials and H3 peak magnitude are revealed, which provides an important guideline for further nonlinear suppression.

10.
Micromachines (Basel) ; 13(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35334731

RESUMEN

To cope with ubiquitous wireless connectivity and the increased and faster data delivery in 5G communication, surface acoustic wave (SAW) filters are progressively requiring wider bandwidths. Conventional bulk 15°YX-LiNbO3 substrates with a large coupling coefficient (K2) are attractive for the low-cost mass production of wideband SAW filters, but these generally suffer from spurious responses, limiting their practical application. In this work, a novel and simple SAW configuration is proposed that uses thickness-modulated interdigital transducer (IDT) structures to overcome the limitations set by spurious responses. Different from the conventional design where the thicknesses of the IDT electrodes in the series and parallel resonators generally kept the same, the proposed configuration adopts IDT electrodes of different thicknesses in the series and shunt resonators to suppress or remove unwanted spurious Rayleigh modes from the filter passband. Two different ultra-wideband SAW filter designs employing thickness-modulated IDTs were designed and fabricated to validate the effective suppression of spurious modes. The SAW filters experimentally featured spurious-free responses in the passband as well as a large 3 dB fractional bandwidth (FBW) in the 18.0% and 24.1% ranges and low insertion losses below 1 dB. This work can significantly broaden the range of applications for SAW devices and can open a pathway to commercialize ultra-wideband SAW filters in 5G communication systems.

11.
Biomolecules ; 13(1)2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36671448

RESUMEN

It is very important to compute the mutation spectra, and simulate the intra-host mutation processes by sequencing data, which is not only for the understanding of SARS-CoV-2 genetic mechanism, but also for epidemic prediction, vaccine, and drug design. However, the current intra-host mutation analysis algorithms are not only inaccurate, but also the simulation methods are unable to quickly and precisely predict new SARS-CoV-2 variants generated from the accumulation of mutations. Therefore, this study proposes a novel accurate strand-specific SARS-CoV-2 intra-host mutation spectra computation method, develops an efficient and fast SARS-CoV-2 intra-host mutation simulation method based on mutation spectra, and establishes an online analysis and visualization platform. Our main results include: (1) There is a significant variability in the SARS-CoV-2 intra-host mutation spectra across different lineages, with the major mutations from G- > A, G- > C, G- > U on the positive-sense strand and C- > U, C- > G, C- > A on the negative-sense strand; (2) our mutation simulation reveals the simulation sequence starts to deviate from the base content percentage of Alpha-CoV/Delta-CoV after approximately 620 mutation steps; (3) 2019-NCSS provides an easy-to-use and visualized online platform for SARS-Cov-2 online analysis and mutation simulation.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Simulación por Computador , SARS-CoV-2/genética , Mutación
12.
Materials (Basel) ; 14(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771961

RESUMEN

In this work, we systematically studied the deposition, characterization, and crystal structure modeling of ScAlN thin film. Measurements of the piezoelectric device's relevant material properties, such as crystal structure, crystallographic orientation, and piezoelectric response, were performed to characterize the Sc0.29Al0.71N thin film grown using pulsed DC magnetron sputtering. Crystal structure modeling of the ScAlN thin film is proposed and validated, and the structure-property relations are discussed. The investigation results indicated that the sputtered thin film using seed layer technique had a good crystalline quality and a clear grain boundary. In addition, the effective piezoelectric coefficient d33 was up to 12.6 pC/N, and there was no wurtzite-to-rocksalt phase transition under high pressure. These good features demonstrated that the sputtered ScAlN is promising for application in high-coupling piezoelectric devices with high-pressure stability.

13.
Micromachines (Basel) ; 12(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34442559

RESUMEN

Demagnetization effect plays an important role in the magnetic core design of the orthogonal fluxgate sensor. In this paper, a meander-core orthogonal fluxgate sensor based on amorphous ribbon is described. The demagnetization model of meander-core structures is established, and the average demagnetization factor can be evaluated by finite element modeling. Simulation and experimental analyses were performed to study the effects of demagnetization on the sensitivity and linear range of orthogonal fluxgate sensors in the fundamental mode by varying the number of strips, the line width, and the spacing of the meander-cores. The results were compared and revealed a very close match. The results show that the demagnetization factor increases with an increase in the number of strips and the line width, which leads to an increase in the linear range of the sensors. The sensitivity can be improved by increasing the number of strips appropriately, however, it is reduced when the line width increases. Smaller spacing results in a larger demagnetization factor due to the magnetic interactions between adjacent strips, which reduces the sensitivity of the sensor. The results obtained here from simulations and experiments are useful for designing magnetic sensors with similar structures.

14.
Micromachines (Basel) ; 12(8)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442616

RESUMEN

Phononic crystals with phononic band gaps varying in different parameters represent a promising structure for sensing. Equipping microchannel sensors with phononic crystals has also become a great area of interest in research. For building a microchannels system compatible with conventional micro-electro-mechanical system (MEMS) technology, SU-8 is an optimal choice, because it has been used in both fields for a long time. However, its mechanical properties are greatly affected by temperature, as this affects the phononic bands of the phononic crystal. With this in mind, the viscous dissipation in microchannels of flowing liquid is required for application. To solve the problem of viscous dissipation, this article proposes a simulation model that considers the heat transfer between fluid and microchannel and analyzes the frequency domain properties of phononic crystals. The results show that when the channel length reaches 1 mm, the frequency shift caused by viscous dissipation will significantly affect detecting accuracy. Furthermore, the temperature gradient also introduces some weak passbands into the band gap. This article proves that viscous dissipation does influence the band gap of phononic crystal chemical sensors and highlights the necessity of temperature compensation in calibration. This work may promote the application of microchannel chemical sensors in the future.

15.
Micromachines (Basel) ; 12(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525686

RESUMEN

Radio-frequency (RF) surface acoustic wave (SAW) resonators used as filters and duplexers are mass-produced and widely used in current mobile phones. With the numerous emergences of the diverse device structure, a universal method used for the accurate and fast simulation of the SAW resonator calls for urgent demand. However, there are too many instances where the behavior of the entire acoustic resonator cannot be characterized rapidly and efficiently due to limitations in the current computer memory and speed. This is especially true for SAW resonators configured with long arrays of inter-digital transducers (IDTs), and we have to resort to a periodic analysis. In this paper, the previously reported generalized partial differential equations (PDE) based on the two-dimensional finite element method (2D-FEM) model is extended to analysis for the periodic structure of the SAW resonator. We present model order reduction (MOR) techniques based on FEM and periodic boundary conditions to achieve a dimensionally reduced PDE model without decreasing the accuracy of computations. Examples of different SAW devices, including the regular SAW, IHP-SAW and TC-SAW resonators, are provided which shows the results of the periodic analysis compared with the experimental results of the actual resonators. The investigation results demonstrate the properties of the proposed methodology and prove its effectiveness and accuracy.

16.
Food Microbiol ; 95: 103713, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33397627

RESUMEN

Higher alcohols are important flavor substance in alcoholic beverages. The content of α-amino nitrogen (α-AN) in the fermentation system affects the formation of higher alcohols by Saccharomyces cerevisiae. In this study, the effect of α-AN concentration on the higher alcohol productivity of yeast was explored, and the mechanism of this effect was investigated through metabolite and transcription sequence analyses. We screened 12 most likely genes and constructed the recombinant strain to evaluate the effect of each gene on high alcohol formation. Results showed that the AGP1, GDH1, and THR6 genes were important regulators of higher alcohol metabolism in S. cerevisiae. This study provided knowledge about the metabolic pathways of higher alcohols and gave an important reference for the breeding of S. cerevisiae with low-yield higher alcohols to deal with the fermentation system with different α-AN concentrations in the brewing industry.


Asunto(s)
Alcoholes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Aromatizantes , Perfilación de la Expresión Génica , Genes Reguladores , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Micromachines (Basel) ; 12(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375079

RESUMEN

In this paper, a hybrid full-wave analysis of surface acoustic wave (SAW) devices is proposed to achieve accurate and fast simulation. The partial differential equation (PDE) models of the physical system in question and graphics processing unit (GPU)-assisted hierarchical cascading technology (HCT) are used to calculate acoustic-electric characteristics of a SAW filter. The practical solid model of the radio frequency (RF) filter package is constructed in High Frequency Structure Simulator (HFSS) software and the parasitic electromagnetics of the entire package is considered in the design process. The PDE-based models of the two-dimensional finite element method (2D-FEM) are derived in detail and solved by the PDE module embedded in COMSOL Multiphysics. Due to the advantages of PDE-based 2D-FEM, it is universal, efficient and not restricted to handling arbitrary materials and crystal cuts, electrode shapes, and multi-layered substrate. Combining COMSOL Multiphysics with a user-friendly interface, a flexible way of modeling and mesh generation, it can greatly reduce the complicated process of modeling and physical properties definition. Based on a hybrid full-wave analysis, we present an example application of this approach on a TC-SAW ladder filter with 5° YX-cut LiNbO3 substrate. Numerical results and measurements were calculated for comparison, and the accuracy and efficiency of the proposed method were verified.

18.
Sensors (Basel) ; 20(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751406

RESUMEN

Surface acoustic wave (SAW)-based sensors have become highly valued for their use as nanosensors in industrial applications. Accurate prediction of the thermal stability is a key problem for sensor design. In this work, a numerical tool based on the finite element method combined with piezoelectric Lagrangian equations has been developed to accurately predict the thermal sensitivity characteristics of surface acoustic wave devices. Theoretical analysis for the geometric nonlinearity contributing to the frequency-temperature characteristic and material constants' dependency on temperature were taken into consideration. The thermomechanical equilibrium equation built on the three-dimensional finite element method (3D-FEM) mesh node took mesh movement into account because thermal expansion was employed. The frequency-temperature characteristics of different SAW modes, including Rayleigh waves and leaky waves excited on a piezoelectric substrate of quartz or lithium tantalate, respectively, were calculated. The theoretical accuracy of the proposed numerical tool was verified by experiments.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31976886

RESUMEN

A precise theoretical model for the thermal sensitivity of Love wave mode is significant in the structure design, temperature compensation, and the prediction of thermal behavior. This article proposes a weak form nonlinear model to calculate the thermal sensitivity of Love waves on arbitrary layered structures. The third-order material constants, as well as the thermal stress and strain tensors between the substrate, electrodes, and wave-guiding layer, are considered in the model. The 9 ×9 effective elastic and the 3 ×9 effective piezoelectric matrixes are imported into the nonlinear constitutive equations and boundary conditions using weak form expressions. A temperature-compensated Love wave mode resonator on a layered ZnO/interdigital transducer (IDT)/quartz structure is obtained. The theoretical model is verified through the comparison of experimental and analytical results. The model is beneficial for the design of Love wave devices and sensors.

20.
Ultrasonics ; 88: 131-136, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29626807

RESUMEN

This paper proposes a general finite element method (FEM)-based wavenumber domain analysis (WDA) to calculate scattering characteristics of surface acoustic wave (SAW) on arbitrary piezoelectric substrates. We add a damping loss mechanism (DLM) to the SAW injection port to avoid interferences from the incident and backscattered modes. After checking the validity of the proposed method, we calculate and study Sezawa mode scattering using a small number of electrodes on the ScAlN/3CSiC structure for demonstration. The frequency dependences of reflection and transmission coefficients and that of the power dissipation ratio for different termination conditions and electrode thicknesses are calculated. Also, the influence of base substrate materials and that of gratings on scattering parameters are explored. Investigation results demonstrate that high reflectivity with suppressed mode conversion can be obtained for the ScAlN-based layer structure if a base substrate with an extremely large velocity is used and if proper grating design is applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA