Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immun Ageing ; 21(1): 48, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026350

RESUMEN

BACKGROUND: Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS: Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS: This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.

2.
Bioorg Med Chem ; 111: 117843, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39083980

RESUMEN

This study reported the design and synthesis of novel 1-amido-2-one-4-thio-deoxypyranose as inhibitors of potential drug target TRIP13 for developing new mechanism-based therapeutic agents in the treatment of multiple myeloma (MM). In comparison with the positive control DCZ0415, the most active compounds C16, C18, C20 and C32 exhibited strong anti-proliferative activity against human MM cell lines (ARP-1 and NCI-H929) with IC50 values of 1 âˆ¼ 2 µM. While the surface plasmon resonance (SPR) and ATPase activity assays demonstrated that the representative compound C20 is a potent inhibitor of TRIP13, C20 also showed good antitumor activity in vivo on BALB/c nude mice xenografted with MM tumor cells. An initial structure-activity study showed that the carbonyl group is crucial for anticancer activity. Overall, this study provided novel 1-amido-2-one-4-thio-deoxypyranoses, which are entirely different from previously reported potent inhibitor structures of TRIP13, and thus would aid the development of carbohydrate-based novel agents in MM pharmacotherapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Animales , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Relación Estructura-Actividad , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Tanquirasas
3.
J Med Internet Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39046096

RESUMEN

BACKGROUND: Large language models (LLMs) demonstrated advanced performance in processing clinical information. However, commercially available LLMs lack specialized medical knowledge and remain susceptible to generating inaccurate information. Given the need for self-management in diabetes, patients commonly seek information online. We introduce the RISE framework and evaluate its performance in enhancing LLMs to provide accurate responses to diabetes-related inquiries. OBJECTIVE: This study aimed to evaluate the potential of RISE framework, an information retrieval and augmentation tool, to improve the LLM's performance to accurately and safely respond to diabetes-related inquiries. METHODS: The RISE, an innovative retrieval augmentation framework, comprises four steps: Rewriting Query, Information Retrieval, Summarization, and Execution. Using a set of 43 common diabetes-related questions, we evaluated three base LLMs (GPT-4, Anthropic Claude 2, Google Bard) and their RISE-enhanced versions. Assessments were conducted by clinicians for accuracy and comprehensiveness, and by patients for understandability. RESULTS: The integration of RISE significantly improved the accuracy and comprehensiveness of responses from all three based LLMs. On average, the percentage of accurate responses increased by 12% (122 - 107/129) with RISE. Specifically, the rates of accurate responses increased by 7% (42 - 39/43) for GPT-4, 19% (39 - 31/43) for Claude 2, and 9% (41 - 37/43) for Google Bard. The framework also enhanced response comprehensiveness, with mean scores improving by 0.44. Understandability was also enhanced by 0.19 on average. Data collection was conducted from Sept. 30, 2023, to Feb. 05, 2024. CONCLUSIONS: RISE significantly improves LLMs' performance in responding to diabetes-related inquiries, enhancing accuracy, comprehensiveness, and understandability. These improvements have crucial implications for RISE's future role in patient education and chronic illness self-management, which contributes to relieving medical resource pressures and raising public awareness of medical knowledge.

5.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 1055-1064, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38804044

RESUMEN

Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated ß galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2)-overexpressing OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.


Asunto(s)
Senescencia Celular , Proteína Potenciadora del Homólogo Zeste 2 , Sistema de Señalización de MAP Quinasas , Mieloma Múltiple , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Mieloma Múltiple/tratamiento farmacológico , Senescencia Celular/efectos de los fármacos , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Piridonas/farmacología , Indoles/farmacología , Fosforilación/efectos de los fármacos
6.
Exp Eye Res ; 243: 109899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636802

RESUMEN

Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.


Asunto(s)
Técnicas de Transferencia de Gen , ARN Mensajero , Epitelio Pigmentado de la Retina , Animales , Ratones , Epitelio Pigmentado de la Retina/metabolismo , ARN Mensajero/genética , Terapia Genética/métodos , Vectores Genéticos , Ratones Endogámicos C57BL , Humanos , Proteínas Fluorescentes Verdes/genética , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
7.
J Econ Entomol ; 117(3): 933-941, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38682556

RESUMEN

The brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) (BPH), is a major, regionally migratory pest of rice in Asia. Despite intensive migratory studies, the seasonal migratory pattern of this species in the year-round breeding region (i.e., Hainan Island) remains largely unknown. To understand the migration dynamics, we conducted relevant research based on BPH light trap catches on Hainan in 2017-2022. Results showed that the occurrence dynamics of BPH in Hainan oscillated in different years and seasons. Overall, there are 4 migration peak periods on Hainan, with outbound peak periods in April-May and August-September and inbound peak periods in June and October. Trajectory and wind fields showed that in August-September, Hainan had complex meteorological conditions, and the outbound paths of BPH were variable, mainly landing in southeastern Guangxi and southwestern Guangdong. In contrast, April-May was influenced by southeasterly winds, with a wider outbound range and a further distance, landing along northeastern Vietnam from west to east toward Guangxi and Guangdong areas with time. Wind-rain fields, trajectory, and hydrogen isotope showed that in June, southwesterly winds transported BPH northward from the Indochina peninsula, where it was hindered by rainfall in the Leizhou Peninsula area and the migrants will be "rained out" into Hainan. Identically, in October, the interactions between northeasterly winds and rainfall belts on the southwest shore of Hainan increased the opportunities for BPH to migrate southward to reach Hainan. Our results suggest that Hainan is not only an important source of BPH migrating from East Asia but also plays the role of a bridge.


Asunto(s)
Migración Animal , Hemípteros , Oryza , Estaciones del Año , Animales , Hemípteros/fisiología , China , Distribución Animal
8.
iScience ; 27(3): 109213, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439953

RESUMEN

Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.

9.
Front Psychol ; 15: 1364939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440250

RESUMEN

Microsaccades are small, involuntary eye movements that occur during fixation. Since the 1950s, researchers have conducted extensive research on the role of microsaccades in visual information processing, and found that they also play an important role in human advanced visual cognitive activities. Research over the past 20 years further suggested that there is a close relationship between microsaccades and visual attention, yet lacking a timely review. The current article aims to provide a state-of-the-art review and bring microsaccades studies into the sight of attention research. We firstly introduce basic characteristics about microsaccades, then summarized the empirical evidence supporting the view that microsaccades can reflect both external (perception) and internal (working memory) attention shifts. We finally conclude and highlight three promising avenues for future research.

10.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367794

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Triterpenos Pentacíclicos , Factor de Transcripción AP-1 , Humanos , Factor de Transcripción AP-1/metabolismo , Angiogénesis , Transducción de Señal , Apoptosis , Linfoma de Células B Grandes Difuso/metabolismo , Línea Celular Tumoral , Proliferación Celular
11.
J Environ Sci (China) ; 138: 418-427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135407

RESUMEN

Bi2O2CO3(BOC)/Bi4O5Br2(BOB)/reduced graphene oxide (rGO) Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method. Ultra-thin nanosheets of BOC and BOB were grown in situ on rGO. The formed 2D/2D direct Z-scheme heterojunction of BOC/BOB with oxygen vacancies (OVs) effectively leads to lower negative electron reduction potential of BOB as well as higher positive hole oxidation potential of BOC, showing improved reduction/oxidation ability. Particularly, rGO is an acceptor of the electrons from the conduction band of BOC. Its dual roles significantly improve the transfer performance of photo-induced charge carriers and accelerate their separation. With layered nanosheet structure, rich OVs, high specific surface area, and increased utilization efficiency of visible light, the multiple synergistic effects of BOC/BOB/rGO can achieve effective generation and separation of the electron-holes, thereby generating more •O2- and h+. The photocatalytic reduction efficiency of CO2 to CO (12.91 µmol/(g·hr)) is three times higher than that of BOC (4.18 µmol/(g·hr)). Moreover, it also achieved almost 100% removal of Rhodamine B and cyanobacterial cells within 2 hours.


Asunto(s)
Electrones , Grafito , Temperatura , Oxígeno
12.
Int Immunopharmacol ; 125(Pt A): 111139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913572

RESUMEN

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.


Asunto(s)
Berberina , Linfoma de Células B Grandes Difuso , Humanos , Apoptosis , Berberina/farmacología , Línea Celular Tumoral , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Commun Biol ; 6(1): 1048, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848613

RESUMEN

Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.


Asunto(s)
Síndrome de Behçet , Vasculitis , Humanos , Síndrome de Behçet/genética , Transcriptoma , Cromatina/genética , Perfilación de la Expresión Génica
14.
iScience ; 26(11): 108111, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867934

RESUMEN

RNA-binding protein with multiple splicing (RBPMS) plays a crucial role in cardiac mesoderm specification and cardiovascular development, as well as being a typical marker for whole retinal ganglion cells (RGCs). However, there is a lack of animal models to spatiotemporally trace the location and function of RBPMS-expressing cells in vivo. In this study, we develop a tamoxifen-inducible RBPMS-tdTomato reporter mouse line to track RBPMS-expressing cells during embryogenesis and adulthood. This mouse line allows us to identify and locate RBPMS-tdTomato-positive cells among various tissues, especially in RGCs and smooth muscle cells, which assist to simulate related retinal degenerative diseases, model and examine choroidal neovascularization non-invasively in vivo. Our results show that the RBPMSCreERT2-tdTomato mouse line is a valuable tool for lineage tracing, disease modeling, drug screening, as well as isolating specific target cells.

15.
J Biochem Mol Toxicol ; 37(12): e23510, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37700718

RESUMEN

Recent years have witnessed increasing studies on the effect of epigenetic silencing of genes in the progression of chronic lymphocytic leukemia (CLL). This study investigates whether the nucleotide binding oligomerization domain containing 2 (NOD2) participates in the cell apoptosis and drug resistance of CLL cells. Cells were treated with adriamycin (ADR), etoposide, aclacinomycin and daunorubicin. After treatment, drug resistance and cell proliferation were examined to detect the inhibitory effect of ADR on cell proliferation; flow cytometry to identify ADR accumulation, the cell cycle distribution and apoptosis after transfection, and rhodamine 123 accumulation and efflux tests to assess P-glycoprotein (P-gp) function. NOD2 silencing or inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway suppressed the multidrug resistance level in CLL, the inhibition rate, and cell proliferation caused by ADR at concentrations of approximately 0.25-1.5 µmol/L. Greater accumulation of ADR was observed in the CLL-AAT cell line than in the CLL-AAT/A02 cell line, but NOD2 silencing or inhibition of the NF-κB signaling pathway further increased the accumulation of ADR drugs in the CLL-AAT cell line and inhibited the drug efflux pump function of P-gp. Additionally, NOD2 silencing or NF-κB signaling pathway inhibition increased the apoptotic rate. The results of this study indicate that NOD2 promotes cell apoptosis and reduces the drug resistance of CLL by inhibiting the NF-κB signaling pathway.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , FN-kappa B , Humanos , FN-kappa B/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Resistencia a Antineoplásicos , Transducción de Señal , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Apoptosis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/farmacología
16.
Arch Biochem Biophys ; 747: 109771, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776936

RESUMEN

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear. Osalmid inhibits the translocation of RRM2 to the nucleus and stimulates autophagosome synthesis but inhibits subsequent autophagosome-lysosome fusion. We confirm that RRM2 binds to receptor-interacting protein kinase 3 (RIPK3) and reduces RIPK3, inhibiting autophagosome-lysosome fusion. Interestingly, the combination of osalmid and bafilomycin A1 (an autophagy inhibitor) depletes RIPK3 and aggravates p62 and autophagosome accumulation, leading to autophagic cell death. Combination therapy demonstrates synergistic cytotoxicity both in vitro and in vivo. Therefore, we propose that combining osalmid and bafilomycin A1(BafA1) may have clinical benefits against MM.

17.
Heliyon ; 9(8): e18324, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554834

RESUMEN

Aging is the strongest risk factor for cardiovascular disease, with progressive decline in the function of vascular endothelial cells (ECs) with age. Systematic analyses of the effects of aging on different cardiac EC types remain limited. Here, we constructed a scRNA atlas of EC transcriptomes in young and old mouse hearts. We identified 10 EC subclusters. The multidimensionally differential genes (DEGs) analysis across different EC clusters shows molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the decrease in angiogenesis and cytoskeletal support capacity of aged ECs. And we performed an in-depth analysis of 3 special ECs, Immunology, Proliferating and Angiogenic. The Immunology EC seems highly associated with some immune regulatory functions, which decline with aging at different degrees. Analysis of two types of neovascular ECs, Proliferating, Angiogenic, implied that Angiogenic ECs can differentiate into multiple EC directions after initially originating from proliferating ECs. And aging leads to a decrease in the ability of vascular angiogenesis and differentiation. Finally, we summarized the effects of aging on cell signaling communication between different EC clusters. This cardiac EC atlas offers comprehensive insights into the molecular regulations of cardiovascular aging, and provides new directions for the prevention and treatment of age-related cardiovascular disease.

18.
Front Genet ; 14: 1175716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214419

RESUMEN

Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.

19.
Front Plant Sci ; 14: 1116221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051087

RESUMEN

The coconut black-headed caterpillar (BHC), Opisina arenosella Walker (Lepidoptera: Xyloryctidae) is an important herbivore of palm trees that originates in South Asia. Over the past decades, O. arenosella has spread to several countries in Eastern and Southeast Asia. BHC larval feeding can cause severe defoliation and occasional plant death, resulting in direct production losses (e.g., for coconut) while degrading the aesthetic value of urban and rural landscapes. In this review paper, we systematically cover taxonomy, bio-ecology, invasion history and current management of O. arenosella throughout Asia. Given that O. arenosella is routinely controlled with insecticides, we equally explore options for more sustainable management through agroecological and biodiversity-based tactics e.g., cultural control or biological control. Also, recent advances in chemical ecology have unlocked lucrative opportunities for volatile-mediated monitoring, mating disruption and mass-trapping. Substantial progress has been made in augmentation biological control, with scheduled releases of laboratory-reared parasitoids lowering BHC infestation pressure up to 95%. Equally, resident ants provide 75-98% mortality of BHC egg masses within the palm canopy. Biological control has been effectively paired with sanitary measures and good agronomy (i.e., proper fertilization, irrigation), and promoted through participatory farmer training programs. Our comprehensive listing of non-chemical preventative and curative tactics offer bright prospects for a more environmentally-sound, biodiversity-driven mitigation of a palm pest of regional allure.

20.
Invest Ophthalmol Vis Sci ; 64(3): 30, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943152

RESUMEN

Purpose: Corneal epithelial homeostasis is maintained by coordinated gene expression across distinct cell populations, but the gene regulatory programs underlying this cellular diversity remain to be characterized. Here we applied single-cell multi-omics analysis to delineate the gene regulatory profile of mouse corneal epithelial cells under normal homeostasis. Methods: Single cells isolated from the cornea epithelium (with marginal conjunctiva) of adult mice were subjected to scRNA-seq and scATAC-seq using the 10×Genomics platform. Cell types were clustered by the graph-based visualization method uniform manifold approximation and projection and unbiased computational informatics analysis. The scRNA-seq and scATAC-seq datasets were integrated following the integration pipeline described in ArchR and Seurat. Results: We characterized diverse corneal epithelial cell types based on gene expression signatures and chromatin accessibility. We found that cell type-specific accessibility regions were mainly located at distal regions, suggesting essential roles of distal regulatory elements in determining corneal epithelial cell diversity. Trajectory analyses revealed a continuum of cell state transition and higher coordination between transcription factor (TF) motif accessibility and gene expression during corneal epithelial cell differentiation. By integrating transcriptomic and chromatin accessibility analysis, we identified cell type-specific and shared gene regulation programs. We also uncovered critical TFs driving corneal epithelial cell differentiation, such as nuclear factor I (NFI) family members, Rarg, Elf3. We found that nuclear factor-κB (NF-κB) family members were positive TFs in limbal cells and some superficial cells, but they were involved in regulating distinct biological processes. Conclusions: Our study presents a comprehensive gene regulatory landscape of mouse cornea epithelial cells, and provides valuable foundations for future investigation of corneal epithelial homeostasis in the context of cornea pathologies and regenerative medicine.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Cromatina , Regulación de la Expresión Génica , Células Epiteliales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...