Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Adv Mater ; : e2408364, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340282

RESUMEN

Membrane-based reverse electrodialysis is globally recognized as a promising technology for harnessing osmotic energy. However, its practical application is greatly restricted by the poor anti-fouling ability of existing membrane materials. Inspired by the structural and functional models of natural cytochrome c oxidases (CcO), the first use of atomically precise homonuclear diatomic iron composites as high-performance osmotic energy conversion membranes with excellent anti-fouling ability is demonstrated. Through rational tuning of the atomic configuration of the diatomic iron sites, the oxidase-like activity can be precisely tailored, leading to the augmentation of ion throughput and anti-fouling capacity. Composite membranes featuring direct Fe-Fe motif configurations embedded within cellulose nanofibers (CNF/Fe-DACs-P) surpass state-of-the-art CNF-based membranes with power densities of ca. 6.7 W m-2 and a 44.5-fold enhancement in antimicrobial performance. Combined, experimental characterization and density functional theory simulations reveal that homonuclear diatomic iron sites with metal-metal interactions can achieve ideally balanced adsorption and desorption of intermediates, thus realizing superior oxidase-like activity, enhanced ionic flux, and excellent antibacterial activity.

2.
Int J Biol Sci ; 20(11): 4277-4296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247810

RESUMEN

Recent investigations have revealed that oxidative stress can lead to neuronal damage and disrupt mitochondrial and endoplasmic reticulum functions after intracerebral hemorrhage (ICH). However, there is limited evidence elucidating their role in maintaining neuronal homeostasis. Metabolomics analysis, RNA sequencing, and CUT&Tag-seq were performed to investigate the mechanism underlying the interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress (ERS) and mitochondrial one-carbon (1C) metabolism during neuronal resistance to oxidative stress. The association between mitochondrial 1C metabolism and the PERK/ATF4 branch of the ERS after ICH was investigated using transcription factor motif analysis and co-immunoprecipitation. The findings revealed interactions between the GRP78/PERK/ATF4 and mitochondrial 1C metabolism, which are important in preserving neuronal homeostasis after ICH. ATF4 is an upstream transcription factor that directly regulates the expression of 1C metabolism genes. Additionally, the GRP78/PERK/ATF4 forms a negative regulatory loop with MTHFD2 because of the interaction between GRP78 and MTHFD2. This study presents evidence of disrupted 1C metabolism and the occurrence of ERS in neurons post-ICH. Supplementing exogenous NADPH or interfering with the PERK/ATF4 could reduce symptoms related to neuronal injuries, suggesting new therapeutic prospects for ICH.


Asunto(s)
Factor de Transcripción Activador 4 , Hemorragia Cerebral , Estrés del Retículo Endoplásmico , Mitocondrias , Neuronas , eIF-2 Quinasa , Factor de Transcripción Activador 4/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Animales , Neuronas/metabolismo , eIF-2 Quinasa/metabolismo , Hemorragia Cerebral/metabolismo , Mitocondrias/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Carbono/metabolismo , Ratas , Ratones , Masculino , Ratas Sprague-Dawley , Estrés Oxidativo
3.
Nat Commun ; 15(1): 8469, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349447

RESUMEN

Rose is an important ornamental crop cultivated globally for perfume production. However, our understanding of the mechanisms underlying scent production and molecular breeding for fragrance is hindered by the lack of a reference genome for tea roses. We present the first complete telomere-to-telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60), including detailed characterization of the structural features of repetitive regions. The expansion of genes associated with phenylpropanoid biosynthesis may account for the unique tea scent. We uncover the release rhythm of aromatic volatile organic compounds and their gene regulatory networks through comparative genomics and time-ordered gene co-expression networks. Analyzes of eugenol homologs demonstrate how plants attract pollinators using specialized phenylpropanoids in specific tissues. This study highlights the conservation and utilization of genetic diversity from wild endangered species through multi-omics approaches, providing a scientific foundation for enhancing rose fragrance via de novo domestication.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Odorantes , Rosa , Compuestos Orgánicos Volátiles , Rosa/genética , Rosa/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis , Redes Reguladoras de Genes , Genómica/métodos , Eugenol/análogos & derivados , Eugenol/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Multiómica
4.
Signal Transduct Target Ther ; 9(1): 258, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341825

RESUMEN

Epigenetic readers frequently affect gene regulation, correlate with disease prognosis, and hold significant potential as therapeutic targets for cancer. Zinc finger MYND-type containing 11 (ZMYND11) is notably recognized for reading the epigenetic marker H3.3K36me3; however, its broader functions and mechanisms of action in cancer remain underexplored. Here, we report that ZMYND11 downregulation is prevalent across various cancers and profoundly correlates with poorer outcomes in prostate cancer patients. Depletion of ZMYND11 promotes tumor cell growth, migration, and invasion in vitro, as well as tumor formation and metastasis in vivo. Mechanistically, we discover that ZMYND11 exhibits tumor suppressive roles by recognizing arginine-194-methylated HNRNPA1 dependent on its MYND domain, thereby retaining HNRNPA1 in the nucleus and preventing the formation of stress granules in the cytoplasm. Furthermore, ZMYND11 counteracts the HNRNPA1-driven increase in the PKM2/PKM1 ratio, thus mitigating the aggressive tumor phenotype promoted by PKM2. Remarkably, ZMYND11 recognition of HNRNPA1 can be disrupted by pharmaceutical inhibition of the arginine methyltransferase PRMT5. Tumors with low ZMYND11 expression show sensitivity to PRMT5 inhibitors. Taken together, our findings uncover a previously unexplored noncanonical role of ZMYND11 as a nonhistone methylation reader and underscore the critical importance of arginine methylation in the ZMYND11-HNRNPA1 interaction for restraining tumor progression, thereby proposing novel therapeutic targets and potential biomarkers for cancer treatment.


Asunto(s)
Epigénesis Genética , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Epigénesis Genética/genética , Masculino , Gránulos de Estrés/genética , Gránulos de Estrés/metabolismo , Línea Celular Tumoral , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinogénesis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Proteínas de Ciclo Celular , Proteínas Co-Represoras
5.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1534-1542, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235011

RESUMEN

We analyzed age structure and dynamics, spatial distribution patterns, and reproductive capabilities of four Rosa persica populations in Xinjiang, to evaluate the survival status of the species and explore the reasons behind its endangerment. The results showed that the populations had fewer individuals in the youngest (Ⅰ) and oldest (Ⅵ-Ⅷ) age classes, with a predominance of middle-aged individuals, resulting in an irregular pyramid-shaped distribution, described as "high in the middle, low on both sides". The populations were generally growing, but were susceptible to external environmental disturbances (Vpi'>0, Pmax>0). The mortality rate (qx) and vanish rate (Kx) peaked at age Ⅴ, leading to a sharp decline in plant abundance. The life expectancy (ex) decreased progressively with the increases of age class, reaching its lowest at age Ⅷ, which indicated minimal vitality at this stage. A time sequence analysis predicted a future dominance of individuals at age Ⅴ-Ⅷ, suggesting an aging trend. Spatially, the four populations were predominantly clumped, with the intensity of clumping ranked from highest to lowest as P4, P3, P1, and P2. P3 and P4 exhibited better reproductive capabilities than P1 and P2. There was a significant positive correlation between hundred-fruit weight and plant height and crown width, and between total seed number and crown width and hundred-fruit weight.


Asunto(s)
Dinámica Poblacional , Rosa , Rosa/crecimiento & desarrollo , China , Frutas/crecimiento & desarrollo , Reproducción , Ecosistema , Conservación de los Recursos Naturales
6.
Int J Biol Macromol ; 279(Pt 3): 135377, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244131

RESUMEN

C. aromaticum is widely cultivated for its aromatic, medicinal, and tea-applicable properties, earning the nickname 'lavender in composite'. Terpenoids are the major compounds of C. aromaticum fragrance. To reveal the molecular mechanisms of terpenoid biosynthesis in C. aromaticum, NGS and SMRT sequencing were employed to identify the key terpene synthase genes. A total of 59,903 non-redundant transcripts were obtained by the transcriptome analysis. Twenty-nine terpene synthase genes (TPSs) were identified, and phylogenetic analysis showed that they belong to four subfamilies of terpene synthases. Five CaTPSs were successfully cloned. Subcellular localization showed they were present in the nucleus and cytosol. Structure models of five terpene synthases were predicted, and molecular docking results showed good binding affinities with FPP/GPP. In vitro enzymatic tests showed that CaTPS7, CaTPS8, CaTPS10 and CaTPS20 could catalyze substrates to produce terpenoids. CaTPS7 and CaTPS20 were both able to effectively convert the precursor FPP into caryophyllene. CaTPS8 could convert FPP to trans-nerolidol and nerolidyl acetate, while CaTPS10 could convert FPP to elemene and aristolochene. This study lays the groundwork for further research to depict the metabolism network of terpenoid in C. aromaticum. These identical terpene synthase genes could be introduced into the cultivated chrysanthemums to enhance their fragrance.

7.
Cell Death Dis ; 15(9): 640, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39251573

RESUMEN

Mesenchymal stromal/stem cells (MSC) have emerged as a promising therapeutic avenue for treating autoimmune diseases, eliciting considerable interest and discussion regarding their underlying mechanisms. This study revealed the distinctive ability of human umbilical cord MSC to aggregate within the lymph nodes of mice afflicted with autoimmune diseases, but this phenomenon was not observed in healthy mice. The specific distribution is driven by the heightened expression of the CCL21-CCR7 axis in mice with autoimmune diseases, facilitating the targeted homing of MSC to the lymph nodes. Within the lymph nodes, MSC exhibit a remarkable capacity to modulate Th17 cell function, exerting a pronounced anti-inflammatory effect. Transplanted MSC stimulates the secretion of L-amino-acid oxidase (LAAO), a response triggered by elevated levels of tumor necrosis factor-α (TNF-α) in mice with autoimmune diseases through the NF-κB pathway. The presence of LAAO is indispensable for the efficacy of MSC, as it significantly contributes to the inhibition of Th17 cells. Furthermore, LAAO-derived indole-3-pyruvic acid (I3P) serves as a potent suppressor of Th17 cells by activating the aryl hydrocarbon receptor (AHR) pathway. These findings advance our understanding of the global immunomodulatory effects exerted by MSC, providing valuable information for optimizing therapeutic outcomes.


Asunto(s)
L-Aminoácido Oxidasa , Ganglios Linfáticos , Células Madre Mesenquimatosas , Células Th17 , Animales , Células Madre Mesenquimatosas/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , L-Aminoácido Oxidasa/metabolismo , Ganglios Linfáticos/metabolismo , Ratones , Humanos , Ratones Endogámicos C57BL , Receptores CCR7/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , FN-kappa B/metabolismo , Trasplante de Células Madre Mesenquimatosas , Transducción de Señal , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Factor de Necrosis Tumoral alfa/metabolismo , Quimiocina CCL21/metabolismo
9.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201381

RESUMEN

Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Filogenia , Proteínas de Plantas , Prunus , Prunus/genética , Prunus/crecimiento & desarrollo , Prunus/enzimología , Prunus/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Familia de Multigenes , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Genoma de Planta
10.
Angew Chem Int Ed Engl ; 63(40): e202409349, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38962957

RESUMEN

Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6-20 nm), as well as low charge density (<4.5 mC m-2). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m-2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m-2, surpassing benchmarks set by previously reported nanofluidic membranes. In the practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl-, contributing to an outstanding power density of ~55 W m-2. Theoretical calculations reveal the important role of the large quantity of anion transport sites, which act as binding sites evenly located in the positively charged N-containing pyridine rings. These binding sites enable kinematic coupling and decoupling between anions and the V2DP skeleton, establishing a continuous Cl- ion transport pathway. This work demonstrates the great promise of large-area ultrathin 2DP membranes featuring highly organized charged ion transport networks when applied for osmotic energy conversion.

11.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956621

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Asunto(s)
Diferenciación Celular , Colitis , Ganglios Linfáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Linfocitos T Reguladores , Células Th17 , Factor de Crecimiento Transformador beta1 , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Colitis/terapia , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ganglios Linfáticos/metabolismo , Células Th17/metabolismo , Células Th17/inmunología , Cordón Umbilical/citología , Mesenterio/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Masculino , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología
12.
Hortic Res ; 11(7): uhae143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988618

RESUMEN

Targeted regulation using transgrafting technology has become a trend. However, the mechanisms of transgene-derived signal communication between rootstocks and scions remain unclear in woody plants. Here, we grafted wild-type (WT) walnut (Juglans regia L.) on WT (WT/WT), JrGA20ox1 (encodes a gibberellin 20-oxidase)-overexpressing (WT/OE), and JrGA20ox1-RNAi transformation (WT/RNAi) walnut in vitro. We aimed to elucidate the mechanisms of JrGA20ox1-derived signal communication under PEG-simulated drought stress between rootstocks and scions in walnut. We demonstrated that JrGA20ox1-OE and JrGA20ox1-RNAi rootstocks could transport active gibberellins (GAs) and JrGA20ox1-RNAi vector-produced sRNAs to WT scions under PEG-simulated drought stress, respectively. The movement of sRNAs further led to a successive decline in JrGA20ox1 expression and active GA content. Meanwhile, unknown mobile signals may move between rootstocks and scions. These mobile signals reduced the expression of a series of GA-responsive and GA-non-responsive genes, and induced ROS production in guard cells and an increase in ABA content, which may contribute to the drought tolerance of WT/RNAi, while the opposite occurred in WT/OE. The findings suggest that JrGA20ox1-derived rootstock-to-scion movement of signals is involved in drought tolerance of scions. Our research will provide a feasible approach for studying signal communication in woody plants.

13.
Adv Sci (Weinh) ; 11(32): e2401492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38932472

RESUMEN

Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFß/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.


Asunto(s)
Alelos , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Proteínas de Homeodominio , Neoplasias de la Próstata , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética
14.
J Exp Bot ; 75(16): 4993-5007, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38706346

RESUMEN

Rose black spot disease, caused by Marssonina rosae (syn. Diplocarpon rosae), is one of the most widespread diseases of field-grown roses worldwide. Pathogens have been found to interfere with or stimulate plant immune responses by secreting effectors. However, the molecular mechanism involved in inhibition of the rose immune response by M. rosae effectors remains poorly understood. Here, we identified the effector MrSEP43, which plays a pivotal role in promoting the virulence of M. rosae and enhancing rose susceptibility to infection by reducing callose deposition, H2O2 accumulation, and the expression of defense genes in the jasmonic acid signaling pathway. Yeast two-hybrid, bimolecular fluorescence complementation, and split luciferase assays showed that MrSEP43 interacted with the rose orphan protein RcBROG. RcBROG, a positive regulator of defense against M. rosae, enhanced rose resistance by increasing callose deposition, H2O2 accumulation, and the expression of RcERF1 in the ethylene signaling pathway. Overall, our findings suggest that the M. rosae virulence effector MrSEP43 specifically targets the orphan protein RcBROG to suppress the rose immune response to M. rosae. These results provide new insights into how M. rosae manipulates and successfully colonizes rose leaves, and are essential for preventing the breakdown of resistance to rose black spot disease.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Rosa , Rosa/inmunología , Rosa/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ascomicetos/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Oxilipinas/metabolismo
15.
Diagnostics (Basel) ; 14(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38786293

RESUMEN

The purpose of this study is to develop a smart training and assessment system called SmartCPR, for teaching and training cardiopulmonary resuscitation (CPR), based on human posture estimation techniques. In this system, trainees can automatically recognize and evaluate whether chest compressions during CPR meet the standard of high-quality CPR by simply using a device such as a smart phone. Through the system, trainees are able to obtain real-time feedback on the quality of compressions so that they can adjust the cycle, depth, frequency, and posture of compressions to meet the standard of high-quality CPR. In addition, the SmartCPR system is convenient for CPR trainers. Trainers can instantly and accurately assess whether the trainee's compressions meet the standard of high-quality CPR, which reduces the risk of manual assessment errors and also reduces the trainer's teaching pressures. Therefore, the SmartCPR system developed in this study can be an important tool for CPR teaching and training for physicians, which can provide training and guidance for high-quality CPR maneuvers and enable trainees to become more proficient in CPR and self-training.

16.
Food Chem ; 452: 139584, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735110

RESUMEN

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Asunto(s)
Frutas , Metabolómica , Rosa , Gusto , Rosa/química , Rosa/metabolismo , Cromatografía Líquida de Alta Presión , Frutas/química , Frutas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/análisis , Espectrometría de Masas en Tándem , Flavonoides/análisis , Flavonoides/metabolismo , Humanos , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo
17.
Plant Genome ; 17(2): e20449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602083

RESUMEN

Pecans [Carya illinoinensis (Wangenh.) K. Koch] are highly valued for their abundance of quality healthy lipids, positively impacting human health and making themselves a preferred choice for nutritionally rich foods. However, a comprehensive understanding of the high-resolution characteristics of pecan fruit lipid composition and its dynamic changes, as well as the transfer between embryo and pericarp during development, remains incomplete. In this study, through integrated multi-omics analysis, we observed significant spatiotemporal heterogeneity in lipid changes between the pericarp and embryo. It showed smaller fluctuations and more stable lipid levels in the pericarp while exhibiting a dynamic pattern of initially increasing and then decreasing lipid content in the embryo. In this study, a total of 52 differentially expressed genes were identified, related to fatty acid synthesis and metabolism pathways in the two tissues, with changes in oleic acid and linoleic acid composition being the primary features of the embryo. This research lays the foundation for further understanding the differential regulation mechanisms of lipid metabolism between embryo and pericarp. Overall, this study filled the knowledge gap regarding dynamic changes in pericarp lipid metabolites, provided crucial insights into the lipid metabolism network during pecan fruit development, and established a scientific basis for the genetic improvement of pecan crops.


Asunto(s)
Carya , Frutas , Metabolismo de los Lípidos , Lipidómica , Transcriptoma , Carya/metabolismo , Carya/genética , Carya/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Lípidos/análisis , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
18.
Planta ; 259(6): 129, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639804

RESUMEN

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Asunto(s)
Resistencia a la Enfermedad , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transducción de Señal , Acetatos/farmacología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
19.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612838

RESUMEN

Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.


Asunto(s)
Antocianinas , Rosa , Humanos , Rosa/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Flavonoides , Glucósidos
20.
Lupus Sci Med ; 11(1)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599669

RESUMEN

OBJECTIVE: Circadian rhythm disruption (CRD) has been associated with inflammation and immune disorders, but its role in SLE progression is unclear. We aimed to investigate the impact of circadian rhythms on immune function and inflammation and their contribution to SLE progression to lupus nephritis (LN). METHODS: This study retrospectively analysed the clinical characteristics and transcriptional profiles of 373 samples using bioinformatics and machine-learning methods. A flare risk score (FRS) was established to predict overall disease progression for patients with lupus. Mendelian randomisation was used to analyse the causal relationship between CRD and SLE progression. RESULTS: Abnormalities in the circadian pathway were detected in patients with SLE, and lower enrichment levels suggested a disease state (normalised enrichment score=0.6714, p=0.0062). The disruption of circadian rhythms was found to be closely linked to lupus flares, with the FRS showing a strong ability to predict disease progression (area under the curve (AUC) of 5-year prediction: 0.76). The accuracy of disease prediction was improved by using a prognostic nomogram based on FRS (AUC=0.77). Additionally, Mendelian randomisation analysis revealed an inverse causal relationship between CRD and SLE (OR 0.6284 (95% CI 0.3630 to 1.0881), p=0.0485) and a positive causal relationship with glomerular disorders (OR 0.0337 (95% CI 1.634e-3 to 6.934e-1), p=0.0280). CONCLUSION: Our study reveals that genetic characteristics arising from CRD can serve as biomarkers for predicting the exacerbation of SLE. This highlights the crucial impact of CRD on the progression of lupus.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Progresión de la Enfermedad , Inflamación , Lupus Eritematoso Sistémico/complicaciones , Nefritis Lúpica/complicaciones , Estudios Retrospectivos , Análisis de la Aleatorización Mendeliana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...