Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0305572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954711

RESUMEN

Green leafy vegetables are an essential component of Chinese leafy vegetables. Due to their crisp stems and tender leaves, orderly harvester generally causes significant mechanical clamping damage. The physical and mechanical properties of green leafy vegetables are one of the important basis to design the orderly harvester. At the same time, they provide important parameters for the simulation and optimization of harvester. So, this paper measured the physical characteristic parameters of roots and stems of green leafy vegetables. Then, based on the TMS-Pro texture analyzer, the elasticity modulus of the roots and stems of green leafy vegetables were measured. The static friction coefficient, dynamic friction coefficient, and restitution coefficient of green leafy vegetables root-root, stem-stem, root-steel, and stem-steel were measured separately using a combination method of inclined plane and high-speed photography. Uniaxial compression creep experiments were carried out on whole and single leaf of green leafy vegetables using the TA.XT plus C universal testing machine. The constitutive equation of the four-element Burgers model was used to fit the deformation curve of the sample with time during the constant-pressure loading stage. The fitting determination coefficients R2 were all higher than 0.996, which verified the reasonable validity of the selected model. The above experimental results provide a parameter basis and theoretical support for the design and discrete element simulation optimization of orderly harvester critical components of green leafy vegetables.


Asunto(s)
Hojas de la Planta , Raíces de Plantas , Verduras , Viscosidad , Hojas de la Planta/química , Elasticidad , Tallos de la Planta/fisiología
2.
Hortic Res ; 11(6): uhae100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863996

RESUMEN

Horticultural crops comprising fruit, vegetable, ornamental, beverage, medicinal and aromatic plants play essential roles in food security and human health, as well as landscaping. With the advances of sequencing technologies, genomes for hundreds of horticultural crops have been deciphered in recent years, providing a basis for understanding gene functions and regulatory networks and for the improvement of horticultural crops. However, these valuable genomic data are scattered in warehouses with various complex searching and displaying strategies, which increases learning and usage costs and makes comparative and functional genomic analyses across different horticultural crops very challenging. To this end, we have developed a lightweight universal search engine, HortGenome Search Engine (HSE; http://hort.moilab.net), which allows for the querying of genes, functional annotations, protein domains, homologs, and other gene-related functional information of more than 500 horticultural crops. In addition, four commonly used tools, including 'BLAST', 'Batch Query', 'Enrichment analysis', and 'Synteny Viewer' have been developed for efficient mining and analysis of these genomic data.

3.
Opt Lett ; 49(6): 1540-1543, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489445

RESUMEN

Polarization-resolved second-harmonic generation (PSHG) microscopy is widely used in investigating the structural and morphological alterations of collagen. However, the resolution of second-harmonic generation (SHG) imaging remains constrained by optical diffraction, resulting in the polarization extraction of collagen characteristics from the average properties of collagen fibers. In this study, multifocal structured illumination microscopy (MSIM) was combined with PSHG to achieve polarization-resolved super-resolution imaging of second-harmonic generation signals. For the first time to our knowledge, periodic structures with an average pitch of 277 nm were observed in mouse tail tendons using optical microscopy, and the orientation angle of fibrils within each period was found to exhibit an alternating arrangement along the axis in a regular pattern.

4.
J Photochem Photobiol B ; 250: 112816, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029664

RESUMEN

Although photobiomodulation (PBM) and gamma visual stimulatqion (GVS) have been overwhelmingly explored in the recent time as a possible light stimulation (LS) means of Alzheimer's disease (AD) therapy, their effects have not been assessed at once. In our research, the AD mouse model was stimulated using light with various parameters [continuous wave (PBM) or 40 Hz pulsed visible LED (GVS) or 40 Hz pulsed 808 nm LED (PBM and GVS treatment)]]. The brain slices collected from the LS treated AD model mice were evaluated using (i) fluorescence microscopy to image thioflavine-S labeled amy-loid-ß (Aß) plaques (the main hallmark of AD), or (ii) two-photon excited fluorescence (TPEF) imaging of unlabeled Aß plaques, showing that the amount of Aß plaques was reduced after LS treatment. The imaging results correlated well with the results of Morris water maze (MWM) test, which demonstrated that the spatial learning and memory abilities of LS treated mice were noticeably higher than those of untreated mice. The LS effect was also assessed by in vivo nonlinear optical imaging, revealing that the cerebral amyloid angiopathy decreased spe-cifically as a result of 40 Hz pulsed 808 nm irradiation, on the contrary, the angiopathy reversed after visible 40 Hz pulsed light treatment. The obtained results provide useful reference for further optimization of the LS (PBM or GVS) parameters to achieve efficient phototherapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Terapia por Luz de Baja Intensidad , Ratones , Animales , Estimulación Luminosa , Terapia por Luz de Baja Intensidad/métodos , Encéfalo/metabolismo , Placa Amiloide , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos
5.
Small ; 20(20): e2307129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126615

RESUMEN

Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.

6.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762594

RESUMEN

Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.


Asunto(s)
Artritis Reumatoide , Terapia por Luz de Baja Intensidad , Osteoartritis , Animales , Humanos , Calidad de Vida , Inflamación , Artritis Reumatoide/radioterapia , Osteoartritis/radioterapia
7.
Animals (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36899660

RESUMEN

In order to study the smart management of dairy farms, this study combined Internet of Things (IoT) technology and dairy farm daily management to form an intelligent dairy farm sensor network and set up a smart dairy farm system (SDFS), which could provide timely guidance for dairy production. To illustrate the concept and benefits of the SDFS, two application scenarios were sampled: (1) Nutritional grouping (NG): grouping cows according to the nutritional requirements by considering parities, days in lactation, dry matter intake (DMI), metabolic protein (MP), net energy of lactation (NEL), etc. By supplying feed corresponding to nutritional needs, milk production, methane and carbon dioxide emissions were compared with those of the original farm grouping (OG), which was grouped according to lactation stage. (2) Mastitis risk prediction: using the dairy herd improvement (DHI) data of the previous 4 lactation months of the dairy cows, logistic regression analysis was applied to predict dairy cows at risk of mastitis in successive months in order to make suitable measurements in advance. The results showed that compared with OG, NG significantly increased milk production and reduced methane and carbon dioxide emissions of dairy cows (p < 0.05). The predictive value of the mastitis risk assessment model was 0.773, with an accuracy of 89.91%, a specificity of 70.2%, and a sensitivity of 76.3%. By applying the intelligent dairy farm sensor network and establishing an SDFS, through intelligent analysis, full use of dairy farm data would be made to achieve higher milk production of dairy cows, lower greenhouse gas emissions, and predict in advance the occurrence of mastitis of dairy cows.

8.
Biomedicines ; 10(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36428517

RESUMEN

Long-term, repeatable monitoring of the appearance and progress of Alzheimer's disease (AD) in real time can be extremely beneficial to acquire highly reliable diagnostic insights, which is crucial for devising apt strategies towards effective AD treatment. Herein, we present an optimized innovative cranial window imaging method for the long-term repeatable imaging of amyloid-ß (Aß) plaques and vessels in an AD mouse model. Basically, two-photon excitation fluorescence (TPEF) microscopy was used to monitor the fluorescently labeled Aß plaques, whereas the label-free blood vessels were studied using coherent anti-Stokes Raman scattering (CARS) microscopy in the live in vivo AD mouse model. It was possible to clearly observe the Aß deposition and vascular structure in the target cortex localization for 31 weeks in the AD mouse model using this method. The combined TPEF/CARS imaging studies were also instrumental in realizing the relationship between the tendency of Aß deposition and ageing. Essentially, the progression of cerebral amyloid angiopathy (CAA) in the AD mouse model was quantitatively characterized, which revealed that the proportion Aß deposition in the unit vessel can increase from 13.63% to 28.80% upon increasing the age of mice from 8 months old to 14 months old. The proposed imaging method provided an efficient, safe, repeatable platform with simple target localization aptitude towards monitoring the brain tissues, which is an integral part of studying any brain-related physiological or disease conditions to extract crucial structural and functional information.

9.
Alzheimers Res Ther ; 14(1): 84, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717405

RESUMEN

BACKGROUND: Low-intensity light can decelerate neurodegenerative disease progression and reduce amyloid ß (Aß) levels in the cortex, though the cellular and molecular mechanisms by which photobiomodulation (PBM) protects against neurodegeneration are still in the early stages. Microglia cells play a key role in the pathology of Alzheimer's disease by causing chronic inflammation. We present new results concerning the PBM of both oxidative stress and microglia metabolism associated with the activation of metabolic processes by 808 nm near-infrared light. METHODS: The studies were carried out using healthy male mice to obtain the microglial cell suspension from the hippocampus. Oligomeric ß-amyloid (1-42) was prepared and used to treat microglia cells. Light irradiation of cells was performed using diode lasers emitting at 808 nm (30 mW/cm2 for 5 min, resulting in a dose of 10 J/cm2). Mitochondrial membrane potential, ROS level studies, cell viability, apoptosis, and necrosis assays were performed using epifluorescence microscopy. Phagocytosis, nitric oxide and H2O2 production, arginase, and glucose 6-phosphate dehydrogenase activities were measured using standard assays. Cytokines, glucose, lactate, and ATP were measurements with ELISA. As our data were normally distributed, two-way ANOVA test was used. RESULTS: The light induces a metabolic shift from glycolysis to mitochondrial activity in pro-inflammatory microglia affected by oligomeric Aß. Thereby, the level of anti-inflammatory microglia increases. This process is accompanied by a decrease in pro-inflammatory cytokines and an activation of phagocytosis. Light exposure decreases the Aß-induced activity of glucose-6-phosphate dehydrogenase, an enzyme that regulates the rate of the pentose phosphate pathway, which activates nicotinamide adenine dinucleotide phosphate oxidases to further produce ROS. During co-cultivation of neurons with microglia, light prevents the death of neurons, which is caused by ROS produced by Aß-altered microglia. CONCLUSIONS: These original data clarify reasons for how PBM protects against neurodegeneration and support the use of light for therapeutic research in the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Peróxido de Hidrógeno , Masculino , Ratones , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Fototerapia , Especies Reactivas de Oxígeno/metabolismo
10.
Front Neuroimaging ; 1: 903531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555169

RESUMEN

Background: In Alzheimer's disease (AD), the deposition of ß-amyloid (Aß) plaques is closely associated with the neuronal apoptosis and activation of microglia, which may result in the functional impairment of neurons through pro-inflammation and over-pruning of the neurons. Photobiomodulation (PBM) is a non-invasive therapeutic approach without any conspicuous side effect, which has shown promising attributes in the treatment of chronic brain diseases such as AD by reducing the Aß burden. However, neither the optimal parameters for PBM treatment nor its exact role in modulating the microglial functions/activities has been conclusively established yet. Methods: An inflammatory stimulation model of Alzheimer's disease (AD) was set up by activating microglia and neuroblastoma with fibrosis ß-amyloid (fAß) in a transwell insert system. SH-SY5Y neuroblastoma cells and BV2 microglial cells were irradiated with the 808- and 1,064-nm lasers, respectively (a power density of 50 mW/cm2 and a dose of 10 J/cm2) to study the PBM activity. The amount of labeled fAß phagocytosed by microglia was considered to assess the microglial phagocytosis. A PBM-induced neuroprotective study was conducted with the AD model under different laser parameters to realize the optimal condition. Microglial phenotype, microglial secretions of the pro-inflammatory and anti-inflammatory factors, and the intracellular Ca2+ levels in microglia were studied in detail to understand the structural and functional changes occurring in the microglial cells of AD model upon PBM treatment. Conclusion: A synergistic PBM effect (with the 808- and 1,064-nm lasers) effectively inhibited the fAß-induced neurotoxicity of neuroblastoma by promoting the viability of neuroblastoma and regulating the intracellular Ca2+ levels of microglia. Moreover, the downregulation of Ca2+ led to microglial polarization with an M2 phenotype, which promotes the fAß phagocytosis, and resulted in the upregulated expression of anti-inflammatory factors and downregulated expression of inflammatory factors.

11.
Biosensors (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677321

RESUMEN

Due to the increase in the average age of humans, Alzheimer's disease (AD) has become one of the disorders with the highest incidence worldwide. Abnormal amyloid ß protein (Aß) accumulation is believed to be the most common cause of AD. Therefore, distinguishing the lesion areas can provide clues for AD diagnosis. Here, we present an optical spectroscopy and imaging approach based on coherent anti-Stokes Raman scattering (CARS). Label-free vibrational imaging of Aß in a mouse model of AD was performed to distinguish the lesion areas by studying the spectra of regions with and without Aß plaques. Raman spectra in Aß and non-Aß regions exhibited a specific difference in the intensity ratio of the wave peaks detected at 2850 and 2930 cm-1. In the non-Aß region, the ratio of the peak intensity at 2850 cm-1 to that at 2930 cm-1 was approximately 1, whereas that in the Aß region was 0.8. This label-free vibrational imaging may provide a new method for the clinical diagnosis and basic research of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/análisis , Animales , Modelos Animales de Enfermedad , Ratones , Placa Amiloide , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...