Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Adv Healthc Mater ; : e2401581, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129228

RESUMEN

Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.

2.
Soft Robot ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133138

RESUMEN

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

4.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38978477

RESUMEN

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Asunto(s)
Cerio , Oro , Inflamación , Sepsis , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Animales , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Oro/química , Cerio/química , Cerio/uso terapéutico , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Catalasa/química , Citocinas/metabolismo
5.
Front Cardiovasc Med ; 11: 1387421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966753

RESUMEN

Background: Digital Subtraction Angiography (DSA) is currently the most effective diagnostic method for vascular diseases, but it is still subject to various factors, resulting in uncertain diagnosis. Therefore, a new technology is needed to help clinical doctors improve diagnostic accuracy and efficiency. Purpose: The objective of the study was to investigate the effect of utilizing color-coded parametric imaging techniques on the accuracy of identifying active bleeding through DSA, the widely accepted standard for diagnosing vascular disorders. Methods: Several variables can delay the diagnosis and treatment of active bleeding with DSA. To resolve this, we carried out an in vitro simulation experiment to simulate vascular hemorrhage and utilized five color-coded parameters (area under curve, time to peak, time-of-arrival, transit time, and flow rate of contrast agent) to determine the optimal color coding parameters. We then verified it in a clinical study. Results: Five different color-coded parametric imaging methods were compared and the time-of-arrival color coding was the most efficient technique for diagnosing active hemorrhage, with a statistically significant advantage (P < 0.001). In clinical study, 135 patients (101 with confirmed bleeding and 34 with confirmed no bleeding) were collected. For patients whose bleeding could not be determined using DSA alone (55/101) and whose no bleeding could not be diagnosed by DSA alone (35/55), the combination of time-of-arrival color parametric imaging was helpful for diagnosis, with a statistically significant difference (P < 0.01 and P = 0.01). Conclusions: The time-of-arrival color coding imaging method is a valuable tool for detecting active bleeding. When combined with DSA, it improves the visual representation of active hemorrhage and improves the efficiency of diagnosis.

6.
Int J Biol Macromol ; 274(Pt 2): 133423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942404

RESUMEN

Conventional wound dressings are monolithically designed to cover the injured areas as well as absorb the exudates at injured site. Furthermore, antibacterial drugs and growth prompting factors are additionally appended to realize sensible and omnibearing wound management, exhibiting long and tedious treatment process in practice. Consequently, the creation of multifunctional wound dressings that combines wound repair enhancement with antibacterial properties turns out to be significant for simplifying wound managements. In our investigation, electronegative human epidermal growth factor (hEGF) was combined with the positively charged Zn-Al layered double hydroxides (Zn-Al LDHs) via electrostatic interaction while the obtained hEGF/LDH was integrated with sodium hyaluronate hydrogel (SH) hydrogel, forming a composite hydrogel with synergistic benefits for wound management. The innovative hEGF/LDH@SH hydrogel equipped with fine biocompatibility was designed to optimize wound healing in which hEGF stimulates epithelial cell growth while LDH released antibacterial factor Zn2+ against Methicillin-resistant staphylococcus aureus (MRSA) and Escherichia coli (E.coli) under acidic wound environment. Additionally, the SH hydrogel constructed a three-dimensional structure that not only safeguarded the wound area but also maintained a moist environment conducive to recovery. The synthesized hEGF/LDH was confirmed via fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermo-gravimetry (TG) measurements. The release of Zn2+ from Zn-Al LDH under acid circumstance was detected via inductively coupled plasma (ICP) and the in vitro bactericidal experiments endowed the antibacterial property of hEGF/LDH@SH hydrogel. In vitro drug release experiments illustrated the controlled-release of hEGF from hEGF/LDH which promoted the long-term affect of hEGF at wound site. In vitro cell experiments verified that the hEGF/LDH@SH hydrogel motivated the promotion on cell proliferation and migration without cytotoxicity. An in vivo study of the repairing of MRSA-infected wound in mice indicated that hEGF/LDH@SH hydrogel serves as a simple and novel, innoxious and efficient wound healing approach. This brand new hydrogel possesses properties of promoting the regeneration of skin tissue, achieving antimicrobial therapy without any accessional antibacterial drugs as well as realizing controlled release of hEGF.


Asunto(s)
Antibacterianos , Ácido Hialurónico , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Humanos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/química , Pruebas de Sensibilidad Microbiana , Zinc/química , Zinc/farmacología , Concentración de Iones de Hidrógeno
7.
Anal Methods ; 16(25): 4104-4115, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38855940

RESUMEN

Fluoroquinolone (FQ) antibiotics, one of the leading environmental pollutants, have ecotoxic effects that can accumulate through ecosystems and harm human health. The determination of FQs is still difficult due to the complex matrix, many interfering factors, and low concentration. Hence, a magnetic microporous organic network (MON) composite denoted as Fe3O4@MON-NH2@CM-ß-CD with excellent FQ adsorption performance was prepared by ß-CD covalent modification of a MON. Based on the existence of π-π packing, hydrophobic interaction, and hydrogen bonding between Fe3O4@MON-NH2@CM-ß-CD and FQs, a new magnetic solid phase extraction (MSPE) method for the enrichment of FQs was developed. Under optimized MSPE conditions, five FQs were detected by HPLC-UV with good linearity (R2 ≥ 0.9989) in the range of 0.02-1 µg mL-1, and detection limits (S/N = 3) in the range of 0.0014-0.0023 µg mL-1. The satisfactory recoveries ranged from 93.1 to 116.2% with RSDs lower than 8.39% when applied to actual environmental water samples. These results revealed that Fe3O4@MON-NH2@CM-ß-CD as an adsorbent for MSPE had excellent performance for FQ extraction from real samples, and the MON material types were expanded through the functionalization of MONs, which would have great potential for further application in various analytical methods.


Asunto(s)
Antibacterianos , Fluoroquinolonas , Extracción en Fase Sólida , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Fluoroquinolonas/análisis , Fluoroquinolonas/química , Fluoroquinolonas/aislamiento & purificación , Extracción en Fase Sólida/métodos , Antibacterianos/análisis , Antibacterianos/química , beta-Ciclodextrinas/química , Porosidad , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección
8.
ACS Appl Mater Interfaces ; 16(25): 31950-31965, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861025

RESUMEN

Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.


Asunto(s)
Colitis Ulcerosa , Melaninas , Nanopartículas , Probióticos , Animales , Humanos , Masculino , Ratones , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Limosilactobacillus fermentum , Melaninas/química , Ratones Endogámicos C57BL , Nanopartículas/química , Probióticos/química , Probióticos/farmacología
9.
EBioMedicine ; 104: 105183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848616

RESUMEN

BACKGROUND: Contrast-enhanced CT scans provide a means to detect unsuspected colorectal cancer. However, colorectal cancers in contrast-enhanced CT without bowel preparation may elude detection by radiologists. We aimed to develop a deep learning (DL) model for accurate detection of colorectal cancer, and evaluate whether it could improve the detection performance of radiologists. METHODS: We developed a DL model using a manually annotated dataset (1196 cancer vs 1034 normal). The DL model was tested using an internal test set (98 vs 115), two external test sets (202 vs 265 in 1, and 252 vs 481 in 2), and a real-world test set (53 vs 1524). We compared the detection performance of the DL model with radiologists, and evaluated its capacity to enhance radiologists' detection performance. FINDINGS: In the four test sets, the DL model had the area under the receiver operating characteristic curves (AUCs) ranging between 0.957 and 0.994. In both the internal test set and external test set 1, the DL model yielded higher accuracy than that of radiologists (97.2% vs 86.0%, p < 0.0001; 94.9% vs 85.3%, p < 0.0001), and significantly improved the accuracy of radiologists (93.4% vs 86.0%, p < 0.0001; 93.6% vs 85.3%, p < 0.0001). In the real-world test set, the DL model delivered sensitivity comparable to that of radiologists who had been informed about clinical indications for most cancer cases (94.3% vs 96.2%, p > 0.99), and it detected 2 cases that had been missed by radiologists. INTERPRETATION: The developed DL model can accurately detect colorectal cancer and improve radiologists' detection performance, showing its potential as an effective computer-aided detection tool. FUNDING: This study was supported by National Science Fund for Distinguished Young Scholars of China (No. 81925023); Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20345); National Natural Science Foundation of China (No. 82072090 and No. 82371954); Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (No. 2022B1212010011); High-level Hospital Construction Project (No. DFJHBF202105).


Asunto(s)
Neoplasias Colorrectales , Medios de Contraste , Aprendizaje Profundo , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/diagnóstico , Femenino , Masculino , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Persona de Mediana Edad , Anciano , Curva ROC , Adulto , Anciano de 80 o más Años
10.
Adv Healthc Mater ; : e2400715, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822808

RESUMEN

Despite advancements in breast cancer treatment, bone metastases remain a significant concern for advanced breast cancer patients. Current theranostics strategies face challenges in integrating tumor theranostics and bone formation. Herein, this work develops an activatable targeted nanomedicine AuMnCO@BSA-N3 (AMCBN) to enable a novel collaborative integration of second near-infrared (NIR-II) fluorescence imaging guided precise theranostics for breast cancer bone metastases and osteogenic microenvironment remolding. This strategy employs a chemical coordination between noble metal complex and metal carbonyl (MnCO), with surface modification of azide groups to enhance tumor affinity through passive and active targeting. The initiated respondent behavior of AMCBN by tumor microenvironment accelerate the degradation of coordinated MnCO, resulting in a rapid release of multifunctional agents for efficient chemodynamic therapy (CDT)/gas synergistic therapy. Meanwhile, the exceptional bone-binding properties enable the efficient and controlled release of Mn2+ ions and carbon monoxide (CO) in the bone microenvironment, thereby facilitating the expression of osteogenesis-related proteins and establishing a novel synchronous theranostics process for tumor-bone repair.

12.
ACS Appl Mater Interfaces ; 16(24): 30890-30899, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38843539

RESUMEN

Multimodal sensing platforms may offer reliable, fast results, but it is still challenging to incorporate biosensors with high discriminating ability in complex biological samples. Herein, we established a highly sensitive dual colorimetric/electrochemical monitoring approach for the detection of hydrogen sulfide (H2S) utilizing Cu-doped In-based metal-organic frameworks (Cu/In-MOFs) combined with a versatile color selector software-based smartphone imaging device. H2S can result in the enhancement of the electrochemical signal because of the electroactive substance copper sulfide (CuxS), the decrease of the colorimetric signal of the characteristic absorption response caused by the strong coordination effect on Cu/In-MOFs, and the obvious changes of red-green-blue (RGB) values of images acquired via an intelligent smartphone. Attractively, the Cu/In-MOFs-based multimodal detection guarantees precise and sensitive detection of H2S with triple-signal detection limits of 0.096 µM (electrochemical signals), 0.098 µM (colorimetric signals), and 0.099 µM (smartphone signals) and an outstanding linear response. This analytical toolkit provides an idea for fabricating a robust, sensitive, tolerant matrix and reliable sensing platform for rapidly monitoring H2S in clinical disease diagnosis and visual supervision.


Asunto(s)
Colorimetría , Cobre , Técnicas Electroquímicas , Sulfuro de Hidrógeno , Estructuras Metalorgánicas , Teléfono Inteligente , Sulfuro de Hidrógeno/análisis , Cobre/química , Estructuras Metalorgánicas/química , Colorimetría/métodos , Colorimetría/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Límite de Detección , Indio/química
13.
Adv Healthc Mater ; : e2401459, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38938149

RESUMEN

The development of nanoassemblies, activated by the tumor microenvironment, capable of generating photothermal therapy (PTT) and amplifying the "ROS (·OH) storm," is essential for precise and effective synergistic tumor treatment. Herein, an innovative cascade-amplified nanotheranostics based on biodegradable Pd-BSA-GOx nanocomposite for NIR-II photoacoustic imaging (PAI) guides self-enhanced NIR-II PTT/chemodynamic therapy (CDT)/starvation synergistic therapy. The Pd-BSA-GOx demonstrates the ability to selectively convert overexpressed H2O2 into strongly toxic ·OH by a Pd/Pd2+-mediated Fenton-like reaction at a lower pH level. Simultaneously, the GOx generates H2O2 and gluconic acid, effectively disrupting nutrient supply and instigating tumor starvation therapy. More importantly, the heightened levels of H2O2 and increased acidity greatly enhance the Fenton-like reactivity, generating a significant "·OH storm," thereby achieving Pd2+-mediated cascade-amplifying CDT. The specific PTT facilitated by undegraded Pd accelerates the Fenton-like reaction, establishing a positive feedback process for self-enhancing synergetic PTT/CDT/starvation therapy via the NIR-II guided-PAI. Therefore, the multifunctional nanotheranostics presents a simple and versatile strategy for the precision diagnosis and treatment of tumors.

14.
Mater Today Bio ; 26: 101091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800565

RESUMEN

Oral biofilm is the leading cause of dental caries, which is difficult to completely eradicate because of the complicated biofilm structure. What's more, the hypoxia environment of biofilm and low water-solubility of conventional photosensitizers severely restrict the therapeutic effect of photodynamic therapy (PDT) for biofilm. Although conventional photosensitizers could be loaded in nanocarriers, it has reduced PDT effect because of aggregation-caused quenching (ACQ) phenomenon. In this study, we fabricated an oxygen self-sufficient nanodroplet (PFC/TPA@FNDs), which was composed of fluorinated-polymer (FP), perfluorocarbons (PFC) and an aggregation-induced emission (AIE) photosensitizer (Triphenylamine, TPA), to eradicate oral bacterial biofilm and whiten tooth. Fluorinated-polymer was synthesized by polymerizing (Dimethylamino)ethyl methacrylate, fluorinated monomer and 1-nonanol monomer. The nanodroplets could be protonated and behave strong positive charge under bacterial biofilm acid environment promoting nanodroplets deeply penetrating biofilm. More importantly, the nanodroplets had extremely high PFC and oxygen loading efficacy because of the hydrophobic affinity between fluorinated-polymer and PFC to relieve the hypoxia environment and enhance PDT effect. Additionally, compared with conventional ACQ photosensitizers loaded system, PFC/TPA@FNDs could behave superior PDT effect to ablate oral bacterial biofilm under light irradiation due to the unique AIE effect. In vivo caries animal model proved the nanodroplets could reduce dental caries area without damaging tooth structure. Ex vivo tooth whitening assay also confirmed the nanodroplets had similar tooth whitening ability compared with commercial tooth whitener H2O2, while did not disrupt the surface microstructure of tooth. This oxygen self-sufficient nanodroplet provides an alternative visual angle for oral biofilm eradication in biomedicine.

15.
BMC Pediatr ; 24(1): 351, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778310

RESUMEN

BACKGROUND: Genetic disorders significantly affect patients in neonatal intensive care units, where establishing a diagnosis can be challenging through routine tests and supplementary examinations. Whole-exome sequencing offers a molecular-based approach for diagnosing genetic disorders. This study aimed to assess the importance of whole-exome sequencing for neonates in intensive care through a retrospective observational study within a Chinese cohort. METHODS: We gathered data from neonatal patients at Tianjin Children's Hospital between January 2018 and April 2021. These patients presented with acute illnesses and were suspected of having genetic disorders, which were investigated using whole-exome sequencing. Our retrospective analysis covered clinical data, genetic findings, and the correlation between phenotypes and genetic variations. RESULTS: The study included 121 neonates. Disorders affected multiple organs or systems, predominantly the metabolic, neurological, and endocrine systems. The detection rate for whole-exome sequencing was 52.9% (64 out of 121 patients), identifying 84 pathogenic or likely pathogenic genetic variants in 64 neonates. These included 13 copy number variations and 71 single-nucleotide variants. The most frequent inheritance pattern was autosomal recessive (57.8%, 37 out of 64), followed by autosomal dominant (29.7%, 19 out of 64). In total, 40 diseases were identified through whole-exome sequencing. CONCLUSION: This study underscores the value and clinical utility of whole-exome sequencing as a primary diagnostic tool for neonates in intensive care units with suspected genetic disorders. Whole-exome sequencing not only aids in diagnosis but also offers significant benefits to patients and their families by providing clarity in uncertain diagnostic situations.


Asunto(s)
Secuenciación del Exoma , Unidades de Cuidado Intensivo Neonatal , Humanos , Secuenciación del Exoma/métodos , Recién Nacido , Estudios Retrospectivos , Masculino , Femenino , China , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Pueblos del Este de Asia
16.
Small ; : e2400771, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751055

RESUMEN

Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.

17.
Adv Healthc Mater ; : e2401060, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815213

RESUMEN

Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, this work designs an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications.

18.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722289

RESUMEN

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.

19.
Colloids Surf B Biointerfaces ; 239: 113965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772084

RESUMEN

Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.


Asunto(s)
Ácido Hialurónico , Inmunoterapia , Estructuras Metalorgánicas , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Inmunoterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Animales , Humanos , Ratones , Ácido Hialurónico/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Ratones Endogámicos BALB C , Oxígeno Singlete/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química
20.
Adv Sci (Weinh) ; 11(25): e2401046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666450

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.


Asunto(s)
Artritis Reumatoide , Hidrógeno , Melaninas , Nanomedicina Teranóstica , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Melaninas/metabolismo , Hidrógeno/farmacología , Nanomedicina Teranóstica/métodos , Animales , Nanopartículas/química , Humanos , Técnicas Fotoacústicas/métodos , Ratones , Verde de Indocianina , Modelos Animales de Enfermedad , Terapia Fototérmica/métodos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...