Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770921

RESUMEN

BACKGROUND: Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS: The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION: Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.

2.
J Anim Sci ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813622

RESUMEN

The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve the intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 days of age were divided into 3 groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 days of age, 8 piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake and body weight at 49 days of age in IUGR weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also up-regulated mRNA abundances of jejunal IgG, cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I) and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.

3.
Animals (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473053

RESUMEN

This research study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) on growth performance, oxidation resistance, immunity, and cecal microbiota in broilers. This work classed three hundred and sixty 1-day-old male broilers into three groups randomly, including a control group (CON, basal diet) and antibiotic (ANT, 75 mg kg-1 chlortetracycline added into basal diet) and probiotic groups (LP, 5 × 108 CFU kg-1Lactiplantibacillus plantarum HJLP-1 contained within basal diet). Animals were then fed for 42 days, and each group comprised eight replicates with 15 broilers. Compared with CON, L. plantarum supplementation significantly improved the average daily weight gain (AWDG) (p < 0.05) while reducing the feed-gain ratio over the entire supplemental period (p < 0.05). Birds fed L. plantarum had markedly lower serum ammonia and xanthine oxidase levels (p < 0.05) than those in the ANT and CON groups. Significant improvements (p < 0.05) in superoxide dismutase, catalase, and serum IgM and IgY contents in broilers fed L. plantarum were also observed when compared with those in the CON and ANT groups. Both L. plantarum and antibiotics decreased pro-inflammatory factor IL-1ß levels significantly (p < 0.05), while only L. plantarum promoted anti-inflammatory factor IL-10 levels in the serum (p < 0.05) compared with CON. L. plantarum (p < 0.05) increased acetic acid and butyric acid concentrations in cecal contents when compared to those in CON and ANT. Among the differences revealed via 16S rRNA analysis, L. plantarum markedly improved the community richness of the cecal microbiota. At the genus level, the butyric acid-producing bacteria Ruminococcus and Lachnospiraceae were found in higher relative abundance in samples of L. plantarum-treated birds. In conclusion, dietary L. plantarum supplementation promoted the growth and health of broilers, likely by inducing a shift in broiler gut microbiota toward short-chain fatty acid (SCFA)-producing bacteria. Therefore, L. plantarum has potential as an alternative to antibiotics in poultry breeding.

4.
Poult Sci ; 103(4): 103483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354474

RESUMEN

Salmonella infection is a major concern in poultry production which poses potential risks to food safety. Our previous study confirmed that Lactiplantibacillus plantarum (LP) postbiotic exhibited a strong antibacterial capacity on Salmonella in vitro. This study aimed to investigate the beneficial effects and underlying mechanism of LP postbiotic on Salmonella-challenged broilers. A total of 240 one-day-old male yellow-feathered broilers were pretreated with 0.8% deMan Rogosa Sharpe (MRS) medium or 0.8% LP postbiotic (LP cell-free culture supernatant, LPC) in drinking water for 28 d, and then challenged with 1×109 CFU Salmonella enterica serovar Enteritidis (SE). Birds were sacrificed 3 d postinfection. Results showed that LPC maintained the growth performance by increasing body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) in broilers under SE challenge. LPC significantly attenuated SE-induced intestinal mucosal damage. Specifically, it decreased the intestinal injury score, increased villus length and villus/crypt, regulated the expression of intestinal injury-related genes (Villin, matrix metallopeptidase 3 [MMP3], intestinal fatty acid-binding protein [I-FABP]), and enhanced tight junctions (zona occludens-1 [ZO-1] and Claudin-1). SE infection caused a dramatic inflammatory response, as indicated by the up-regulated concentrations of interleukin (IL)-1ß, IL-6, TNF-α, and the downregulation of IL-10, while LPC pretreatment markedly reversed this trend. We then found that LPC inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by decreasing the gene expression of Caspase-1, IL-lß, and IL-18. Furthermore, LPC suppressed NLRP3 inflammasome activation by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway (the reduced levels of toll-like receptor 4 [TLR4], myeloid differentiation factor 88 [MyD88], and NF-κB). Finally, our results showed that LPC regulated gut microbiota by enhancing the percentage of Ligilactobacillus and decreasing Alistipes and Barnesiella. In summary, we found that LP postbiotic was effective to protect broilers against Salmonella infection, possibly through suppressing NLRP3 inflammasome and optimizing gut microbiota. Our study provides the potential of postbiotics on prevention of Salmonella infection in poultry.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Salmonella , Masculino , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Pollos/metabolismo
5.
J Sci Food Agric ; 104(2): 1020-1029, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37718500

RESUMEN

BACKGROUND: This study investigated the effects of dietary plant polysaccharides on growth performance, immune status and intestinal health in broilers. We randomly divided 960 one-day-old Arbor Acres broiler chicks into four groups. The control (CON) group was fed a basal diet, and the remaining groups were fed a basal diet supplemented with 1000 mg kg-1 Ginseng polysaccharide (GPS), Astragalus polysaccharide (APS), or Salvia miltiorrhiza polysaccharide (SMP) for 42 days. RESULTS: Dietary supplementation with SMP significantly increased body weight (BW) at 21 and 42 days of age, average daily gain (ADG) and average daily feed intake (ADFI) during the starter and whole experimental period, decreased the concentrations of interleukin-1 beta (IL-1ß), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA), increased the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) and catalase (CAT) activity in the serum (P < 0.05). GPS, APS, and SMP supplementation increased serum levels of immunoglobulins, activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC), and cecal concentrations of acetic acid and propionic acid of broilers (P < 0.05). Furthermore, high-throughput sequencing results showed that the relative abundance of Firmicutes was decreased while the relative abundance of Bacteroidota, Alistipes, and Prevotellaceae_NK3B31_group were increased (P < 0.05) in the GPS, APS, and SMP groups compared with the CON group. CONCLUSION: Dietary GPS, APS, and SMP supplementation could improve growth performance, enhance immune function by increasing serum immunoglobulin and regulating cytokines, improve antioxidant function by increasing serum antioxidant enzyme activity, increase volatile fatty acid levels and improve the microbial composition in the cecum of broilers. Dietary SMP supplementation had the optimal effect in this study. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Pollos , Animales , Suplementos Dietéticos , Dieta/veterinaria , Polisacáridos/farmacología , Ciego , Alimentación Animal/análisis
6.
Animals (Basel) ; 13(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38136821

RESUMEN

Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1ß, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1ß level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.

7.
Animals (Basel) ; 13(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893938

RESUMEN

Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the active bacteria (LPBactive), and gavaged with Salmonella enterica Typhimurium (ST). The Turbidimetry test and agar diffusion assay indicated that LPC directly inhibited Salmonella growth. Real-time PCR and biofilm inhibition assay showed that LPC had a strong ability in suppressing Salmonella pathogenicity by reducing virulence genes (SopE, SopB, InvA, InvF, SipB, HilA, SipA and SopD2), pili genes (FilF, SefA, LpfA, FimF), flagellum genes (FlhD, FliC, FliD) and biofilm formation. LP postbiotics were more effective than LP on attenuating ST-induced intestinal damage in mice, as indicated by increasing villus/crypt ratio and increasing the expression levels of tight junction proteins (Occludin and Claudin-1). Elisa assay showed that LP postbiotics significantly reduced ST-induced inflammation by regulating the levels of inflammatory cytokines (the increased IL-4 and IL-10 and the decreased TNF-α) in serum and ileum (p < 0.05). Furthermore, LP postbiotics inhibited the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome by decreasing the protein expression of NLRP3 and Caspase-1, and the gene expression of Caspase-1, IL-1ß and IL-18. Meanwhile, both LPC and LPB observably activated autophagy under ST infection, as indicated by the up-regulated expression of LC3 and Beclin1 and the downregulated p62 level (p < 0.05). Finally, we found that LP postbiotics could trigger an AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy. In summary, Lactiplantibacillus plantarum-derived postbiotics alleviated Salmonella infection via modulating bacterial pathogenicity, autophagy and NLRP3 inflammasome in mice. Our results confirmed the effectiveness of postbiotics agents in the control of Salmonella infection.

8.
BMC Genomics ; 24(1): 464, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592228

RESUMEN

BACKGROUND: Folic acid is a water-soluble B vitamin (B9), which is closely related to the body's immune and other metabolic pathways. The folic acid synthesized by rumen microbes has been unable to meet the needs of high-yielding dairy cows. The incidence rate of subclinical mastitis in dairy herds worldwide ranged between 25%~65% with no obvious symptoms, but it significantly causes a decrease in lactation and milk quality. Therefore, this study aims at exploring the effects of folic acid supplementation on the expression profile of lncRNAs, exploring the molecular mechanism by which lncRNAs regulate immunity in subclinical mastitic dairy cows. RESULTS: The analysis identified a total of 4384 lncRNA transcripts. Subsequently, differentially expressed lncRNAs in the comparison of two groups (SF vs. SC, HF vs. HC) were identified to be 84 and 55 respectively. Furthermore, the weighted gene co-expression network analysis (WGCNA) and the KEGG enrichment analysis result showed that folic acid supplementation affects inflammation and immune response-related pathways. The two groups have few pathways in common. One important lncRNA MSTRG.11108.1 and its target genes (ICAM1, CCL3, CCL4, etc.) were involved in immune-related pathways. Finally, through integrated analysis of lncRNAs with GWAS data and animal QTL database, we found that differential lncRNA and its target genes could be significantly enriched in SNPs and QTLs related to somatic cell count (SCC) and mastitis, such as MSTRG.11108.1 and its target gene ICAM1, CXCL3, GRO1. CONCLUSIONS: For subclinical mastitic cows, folic acid supplementation can significantly affect the expression of immune-related pathway genes such as ICAM1 by regulating lncRNAs MSTRG.11108.1, thereby affecting related immune phenotypes. Our findings laid a ground foundation for theoretical and practical application for feeding folic acid supplementation in subclinical mastitic cows.


Asunto(s)
Mastitis Bovina , ARN Largo no Codificante , Femenino , Bovinos , Animales , Humanos , ARN Largo no Codificante/genética , Mastitis Bovina/genética , Mastitis Bovina/prevención & control , Ácido Fólico/farmacología , Suplementos Dietéticos
9.
Animals (Basel) ; 13(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37443970

RESUMEN

The aim of the present study was to investigate the effects of Bacillus licheniformis (BL) on the growth performance, antioxidant capacity, ileal morphology, intestinal fecal short-chain fatty acids, and microflora of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were assigned into three groups: basal diet (Con), a basal diet with added 109 CFU B. licheniformis/kg (BLl), and a basal diet with added 1010 CFU B. licheniformis/kg (BLh). On day 28, BLh piglets were intraperitoneally injected with LPS (CBL) and sterilized saline water (BL), Con piglets were injected with LPS (LPS) and sterilized saline water (Con), with the injections being administered for three consecutive days. The average daily gain significantly increased from day 1 to day 28 and the feed: gain ratio decreased with BL supplementation compared with the Con group. Supplementation with BLl and BLh reduced the diarrhea rate in piglets. Serum catalase activity increased and malondialdehyde concentration decreased in the CBL treatment group compared with the LPS treatment group. Both BL and CBL treatments increased the ileal villus length/crypt depth ratio compared with Con and LPS treatments. BL administration significantly increased colonic propionic and isobutyric acid concentrations compared with Con treatment. Both BL and CBL piglets had significantly increased fecal acetic, propionic, and butyric acid levels compared with LPS piglets. Analysis of the colonic microbial metagenome showed that Prevotella species were the predominant bacteria in piglets treated with BL and CBL. The CBL-treated piglets had higher scores for lysine biosynthesis, arginine biosynthesis, sulfur relay system, and histidine metabolism. BL-treated piglets had higher scores for glycosaminoglycan biosynthesis-keratan sulfate, oxidative phosphorylation, and pyruvate and carbon metabolism.

10.
Sci China Life Sci ; 66(9): 2041-2055, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452897

RESUMEN

Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.


Asunto(s)
Proteínas de Transporte de Catión , Microbioma Gastrointestinal , Sobrecarga de Hierro , Ratones , Humanos , Animales , Hierro/metabolismo , Transferrina , Células CACO-2 , Disbiosis , ARN Interferente Pequeño , Intestino Delgado/metabolismo , Ferritinas , Proteínas de Transporte de Catión/genética
11.
Sci Total Environ ; 896: 165193, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37406683

RESUMEN

Landscape patterns are important drivers of biodiversity. Owing to differences in vegetation types, sampling methods, diversity measures, spatial scales, and landscape levels, the impact of landscape patterns on biodiversity remains widely debated. Using a global standardized plant community database and land use and land cover maps at 30-m resolution, for the period 1990-2017, we calculated plant species α- and ß-diversity, and landscape metrics at patch- and landscape-levels, and discerned the direct and indirect impacts of landscape patterns on plant species diversity based on environmental factors, namely climate, spatial features, and human disturbance. We found that landscape patterns exhibited the main indirect effects, whereas climate factors exhibited dominant direct effects on plant α-diversity via the direct effects of patch patterns and functional traits. With respect to ß-diversity, landscape-level patterns exerted more direct than indirect effects. These effects are strongly dependent on scale. Landscape- and patch-level patterns had opposite effects on plant diversity, depending on their composition and spatial structure, demonstrating that their effects could be mediated by one another. The adaptation of plants to landscape patterns is mainly through variations in leaf area, plant height, specific leaf area, stem density, seed biomass, and other seed-dispersal traits, which vary across vegetation types. Our findings highlight the importance of functional traits and diversity in understanding the mechanism by which landscape patterns influence plant species diversity; accordingly, we recommend balancing the spatial structure of patch- and landscape-level patterns to enhance variation in functional traits, and, ultimately, to maintain global plant diversity.


Asunto(s)
Biodiversidad , Plantas , Humanos , Biomasa , Semillas , Clima , Ecosistema
12.
J Sci Food Agric ; 103(14): 6958-6965, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37309567

RESUMEN

BACKGROUND: Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS: The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION: Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.


Asunto(s)
Bacillus licheniformis , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Clostridium perfringens/fisiología , Pollos , Bacillus licheniformis/genética , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Enteritis/prevención & control , Enteritis/veterinaria , Enteritis/microbiología , Peso Corporal , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & control
13.
Animals (Basel) ; 13(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37174484

RESUMEN

The purpose of this study is to investigate the effects of Yucca saponin (YSa), Yucca schidigera (YS), and Quillaja Saponaria (QS) on growth performance, nitrogen metabolism, immune ability, antioxidant capability, and intestinal flora of yellow-feather broilers. This study randomly divided a total of 480 1-day yellow-feather broilers into 4 treatment groups. Factors in the 4 groups included CON group (basic diet), YSa group (basic diet mixed with 500 mg/kg YSa), YS group (basic diet mixed with 500 mg/kg YS), and QS group (basic diet mixed with 500 mg/kg QS). Throughout the 56-day study period, YSa, YS, and QS groups had higher average daily gain in broilers than the CON group (p < 0.01). The YS group had a lower feed gain ratio (F: G) in broilers than the CON group (p < 0.05). YSa, YS, and QS showed increased serum immunoglobin A (IgA), immunoglobin Y (IgY), immunoglobin M (IgM), and total antioxidant capacity (T-AOC) levels; enhanced acetic acid, butyric acid, and valeric acid levels of cecal content; and reduced contents of ammonia nitrogen, urea nitrogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in serum in broilers (p < 0.05). The relative abundance of Lachnoclostridium in the QS group was decreased compared with that in the CON group (p < 0.05). Higher IgA and IgY sera contents were observed in the YS group compared to the YSa and QS groups (p < 0.05). In contrast with the QS group, the serum IL-6 concentration of the YS group was reduced (p < 0.05). In conclusion, YSa, YS, and QS promoted growth performance, nitrogen metabolism, immunity, antioxidant capability, and intestinal flora in broilers. Through the comparison of YSa, YS, and QS, it was found that YS is more suitable as a feed additive to ameliorate the healthy growth of broilers.

14.
Front Immunol ; 14: 1140564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033995

RESUMEN

Bacillus licheniformis (B. licheniformis) is a well-accepted probiotic that has many benefits on both humans and animals. This study explored the effects of B. licheniformis on growth performance, intestinal mucosal barrier functions, immunity as well as serum metabolome in the weaned piglets exposed to lipopolysaccharide (LPS). One hundred and twenty piglets weaned at four weeks of age were separated into two groups that received a basal diet (the control group, CON), and a basal diet complemented with B. licheniformis (500 mg/kg, the BL group, BL). Twenty-four piglets were chosen from the above two groups and 12 piglets were injected with LPS intraperitoneally at a concentration of 100 µg/kg and the others were injected with sterile saline solution of the same volume. All the piglets were sacrificed 4 h after LPS challenge. Results showed that B. licheniformis enhanced the ADG and final body weight and lowered the F/G and diarrhea rate. Pre-treatment with B. licheniformis markedly attenuated intestinal mucosal damage induced by LPS challenge. Supplementation with B. licheniformis strengthened immune function and suppressed inflammatory response by elevating the concentrations of serum immunoglobulin (Ig) A and jejunum mucosal IgA and IgG and decreasing serum IL-6 and jejunum mucosal IL-1ß. In addition, B. licheniformis pretreatment prevented LPS-induced intestinal injury by regulating the NLRP3 inflammasome. Furthermore, pretreatment with B. licheniformis tended to reverse the reduction of acetate and propionic acids in the colonic contents that occurred due to LPS stress. B. licheniformis markedly modulated the metabolites of saccharopine and allantoin from lysine and purine metabolic pathways, respectively. Overall, these data emphasize the potentiality of B. licheniformis as a dietary supplement to overcome the challenge of bacterial LPS in the animal and to enhance the food safety.


Asunto(s)
Bacillus licheniformis , Lipopolisacáridos , Humanos , Animales , Porcinos , Lipopolisacáridos/farmacología , Suplementos Dietéticos , Dieta , Destete
15.
J Cell Physiol ; 238(6): 1336-1353, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37052047

RESUMEN

We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1ß, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.


Asunto(s)
Lactobacillus plantarum , Infecciones por Salmonella , Animales , Porcinos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas Activadas por AMP , Lactobacillus plantarum/metabolismo , Proteínas NLR , Autofagia/genética , Interleucina-1beta/metabolismo
16.
Animals (Basel) ; 13(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36670755

RESUMEN

The principal purpose of this research was to study the effects of glycerol monolaurate (GML) on the production performance; egg quality; health state of the oviduct, ovary and ileum; and gut microbiota of laying hens in the later stage. The laying hens were randomly assigned to two groups: a control group and an experiment group, for which 1000 mg/kg of GML was added to a control diet. The results showed that GML increased the laying rate, average egg weight, albumen height, yolk color and Haugh unit and decreased the feed conversion ratio and defective eggs (p < 0.05). GML increased the intestinal villi height and the ratio of villus height to crypt depth (p < 0.05). Moreover, GML improved the contents of cytokines in the oviduct, ovary and ileum mucosa; ameliorated the expression of TLR2, TLR4, MyD88, IL-4, IL-1ß and TNF-α; and increased the expression of Occludin and Muc-2 in the ileal mucosa. The supplementation of GML increased the volatile fatty acids in the cecal contents, such as acetic acid and propionic acid, and up-regulated Bacteroides (p < 0.01) and Alistipes (p < 0.05) richness in the cecal contents. In summary, GML improved production performance, egg quality and immunity; ameliorated the health status of the oviduct, ovary and ileum; enhanced the intestinal barrier function; improved the content of intestinal volatile fatty acids; and regulated the abundance of cecal flora.

17.
Eur J Med Chem ; 243: 114705, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36215854

RESUMEN

The combination of histone deacetylase (HDAC) and autophagy inhibitor has been considered as a novel cancer therapeutic strategy. To find novel HDAC inhibitors that can inhibit autophagy, several new series of oxazole- and thiazole-based HDAC inhibitors were designed and synthesized by replacing the phenyl cap in SAHA with 5-phenyloxazoles and 5-phenylthiazoles. The representative oxazole derivative, compound 21, showed better enzymatic inhibitory activity than SAHA (vorinostat). Compound 21 induced G2/M cell cycle arrest and its antiproliferative activity is 10-fold better than SAHA in multiple tumor cell lines. Western blot analysis showed that compound 21 can markedly increase the acetylation levels of tubulin, histone H3, and histone H4. Contrary to SAHA, compound 21 was found to inhibit autophagy. Additionally, compound 21 induced cell apoptosis via the Bax/Bcl-2 and caspase-3 pathways. Ultimately, compound 21 exhibited higher oral antitumor potency than SAHA in a A549 xenograft model. Our results indicated that compound 21 may be further developed as a promising anticancer agent.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Proliferación Celular , Apoptosis , Vorinostat/farmacología , Autofagia , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oxazoles/farmacología
18.
Animals (Basel) ; 12(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36078001

RESUMEN

Garlic powder (GP) has the outstanding antibacterial, antifungal, antiviral, anti-parasitic and antioxidant characteristics because of its various contained bioactive components, such as alliin, allicin, and polysaccharide, etc. It has been widely used as a native medicine and shown to prevent a variety of diseases. This research was performed to determine the positive effects of GP on growth and intestinal function in lipopolysaccharide (LPS) challenged broilers. A total of 480 one-day-old male Ross 308 broilers of similar initial body weight were randomly divided into four groups with 8 replicates per treatment and 15 chicks each replicate. LPS challenge enhanced the weight loss rate, decreased the immunity and antioxidant capability, increased the intestinal permeability in broilers. When compared with LPS group, broilers fed with GP exhibited improved weight loss rate and jejunum villus height, enhanced ileum antioxidant function, and ameliorated intestinal barrier function. The LPS-challenged broilers in GP group had higher immunity than that of broilers in antibiotics group. GP supplementation could act as a natural alternative to antibiotic additive to alleviate the LPS-induced weight loss rate, inflammatory responses, and oxidative stress in broilers by improving the immunity and intestinal function.

19.
Front Nutr ; 9: 946096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967771

RESUMEN

Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1ß and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut-brain axis.

20.
Animals (Basel) ; 12(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35804509

RESUMEN

Bacillus licheniformis (B. licheniformis) is a safe probiotic that can promote animal growth and inhibit pathogenic bacteria. This study aimed to assess the effects of B. licheniformis, one green feed additive, on growth performance, diarrhea incidence, immune function, fecal volatile fatty acids, and microflora structure in weaned piglets. Weaned piglets (n = 180) were randomly divided into three treatment groups and fed a basal diet and a basal diet supplemented with 500 mg B. licheniformis per kg and 1000 mg B. licheniformis per kg, respectively. The dietary 500 mg/kg B. licheniformis inclusion improved the average daily gain, reduced diarrhea incidence, and strengthened antioxidant capacity. Piglets supplemented with B. licheniformis presented increased serum immunoglobulins (IgA, IgM) compared to the CON group. Meanwhile, the expression of anti-inflammation factors was increased, and the levels of pro-inflammation factors were reduced after B. licheniformis administration. Moreover, the levels of volatile fatty acids, including acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid, in the BL500 and BL1000 groups were increased compared with the CON group, and the concentration of valeric acid was higher in the BL500 group. Furthermore, piglets in the 500 mg/kg B. licheniformis addition group significantly altered fecal microbiota by increasing Clostridium_sensu_stricto_1 and Oscillospira. In conclusion, dietary B. licheniformis relieved diarrhea, enhanced antioxidant capacity, immunity function, and fecal microflora structure in weaned pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA