Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 138: 458-469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135411

RESUMEN

In order to explore an efficient and green method to deal with nitrobenzene (NB) pollutant, reduced graphene oxide (rGO) as an electron shuttle was applied to enhance the extracellular electron transfer (EET) process of Geobacter sulfurreducens, which was a typical electrochemically active bacteria (EAB). In this study, rGO biosynthesis was achieved via the reduction of graphene oxide (GO) by G. sulfurreducens PCA within 3 days. Also, the rGO-PCA combining system completely reduced 50-200 µmol/L of NB to aniline as end product within one day. SEM characterization revealed that PCA cells were partly wrapped by rGO, and therefore the distance of electron transfer between strain PCA and rGO material was reduced. Beside, the ID/IG of GO, rGO, and rGO-PCA combining system were 0.990, 1.293 and 1.31, respectively. Moreover, highest currents were observed in rGO-PCA-NB as 12.950 µA/-12.560 µA at -408 mV/156 mV, attributing to the faster electron transfer efficiency in EET process. Therefore, the NB reduction was mainly due to: (I) direct EET process from G. sulfurreducens PCA to NB; (II) rGO served as electron shuttle and accelerated electron transfer to NB, which was the main degradation pathway. Overall, the biosynthesis of rGO via GO reduction by Geobacter promoted the NB removal process, which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.


Asunto(s)
Geobacter , Grafito , Grafito/química , Nitrobencenos/metabolismo
2.
Environ Pollut ; 325: 121444, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921658

RESUMEN

Electron shuttles (ES) can mediate long-distance electron transfer between extracellular respiratory bacteria (ERB) and the surroundings. However, the effects of graphite structure in ES on the extracellular electron transfer (EET) process remain ambiguous. This work investigated the function of graphite structure in the process of nitrobenzene (NB) degradation by Geobacter sulfurreducens PCA, in which highly aromatic carbon nanotubes (CNTs) was studied as a typical ES. The results showed that the addition of 1.5 g L-1 of CNTs improved the NB biodegradation up to 81.2%, plus 18.8% NB loss due to the adsorption property of CNTs, achieving complete removal of 200 µM NB within 9 h. The amendment of CNTs greatly increased the EET rate, indicating that graphite structure exhibited excellent electron shuttle performance. Furthermore, Raman spectrum proved that CNTs obtained better graphite structure after 90 h of cultivation with strain PCA, resulting in higher electrochemical performance. Also, CNTs was perceived as the "Contaminant Reservoir", which alleviated the toxic effect of NB and shortened the distance of EET process. Overall, this work focused on the effects of material graphite structure on the EET process, which enriched the understanding of the interaction between CNTs and ERB, and these results might promote their application in the in-situ bioremediation of nitroaromatic-polluted environment.


Asunto(s)
Grafito , Nanotubos de Carbono , Oxidación-Reducción , Grafito/metabolismo , Transporte de Electrón , Nitrobencenos
3.
Chemosphere ; 304: 135288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691388

RESUMEN

Modified biochars have been widely applied in ameliorating environmental problems. However, the effect of modified biochar on suppressing CH4 emission in rice paddy soil is not fully understood. In order to further study CH4 regulation in paddy soil via the modification of biochar and explore its influence on key archaeal communities, two modified biochars were generated with the pre-treatment of nitric acid (NBC) and hydrogen peroxide (OBC), respectively, and a control group was setup with water-washed biochar (WBC). Results showed that NBC significantly suppressed CH4 emission, followed by OBC and WBC, while NBC promoted the CO2 emission. Besides, the addition of biochars inhibited the accumulation of acetate and H2 in rice paddy soil, especially in the NBC treatment. 16S rRNA gene sequencing revealed that biochars amendment increased α-diversity of archaeal community and the modified biochars could mitigate the loss of α-diversity in the early stage of anaerobic incubation. Additionally, NBC amendment largely declined the relative abundance of methanogens (especially Methanosarcina) in archaeal community, while OBC and NBC promoted the relative abundance of Candidatus_Methanoperedens. Via Spearman's correlation coefficient analysis, NBC had positive correlations with Methanosaeta, and OBC showed a negative correlation with Methanocella. Overall, this study provided a practical way to regulate the CH4 emission and associated methanogenic archaea via the amendment of different modified biochars in rice paddy soil.


Asunto(s)
Oryza , Suelo , Archaea/genética , Carbón Orgánico , Metano , Oryza/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
4.
J Hazard Mater ; 403: 123682, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264880

RESUMEN

In this work, the incorporation of Fe-bearing sludge-derived biochar greatly enhanced both biotic and abiotic reduction of nitrobenzene (NB) to aniline, which was attributed to the concomitant microbial dissimilatory iron reduction. Biogenic Fe(II) produced by Geobacter sulfurreducens dominated the anaerobic reduction of NB following the pseudo-first-order kinetic. Besides, the increase of pyrolysis temperature from 600 to 900 ℃ to generate biochar resulted in an accelerated removal rate of NB in Geobacter-biochar combined system. The morphology and structural characterization of biochar with G. sulfurreducens confirmed the formation of conductive bacteria-biochar aggregates. Electrochemical measurements suggested the presence of graphitized domains and quinone-like moieties in biochar as redox-active centers, which might play an important role in accelerating electron transfer for microbial dissimilatory iron reduction and NB degradation. This study provides a feasible way of using Fe-bearing sludge as a valuable feedstock for biochar generation and its application with electrochemically active bacteria for the bioremediation of nitroaromatic compounds-polluted wastewater.


Asunto(s)
Electrones , Aguas del Alcantarillado , Carbón Orgánico , Geobacter , Nitrobencenos
5.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129838

RESUMEN

Biochar, a valuable product from the pyrolysis of agricultural and forestry residues, has been widely applied as soil amendment. However, the effect of different types of biochar on soil microorganisms and associated biochemical processes in paddy soil remains ambiguous. In this study, we investigated the impact of biochars derived from different feedstocks (rice straw, orange peel and bamboo powder) on the dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in paddy soil within 90 days of anaerobic incubation. Results showed that biochar amendment overall inhibited the accumulation of SCFAs while accelerating the Fe(III) reduction process in paddy soil. In addition, 16S rRNA gene sequencing results demonstrated that the α-diversity of the bacterial community significantly decreased in response to biochar amendments at day 1 but was relatively unaffected at the end of incubation, and incubation time was the major driver for the succession of the bacterial community. Furthermore, significant correlations between parameters (e.g. SCFAs and iron concentration) and bacterial taxa (e.g. Clostridia, Syntrophus, Syntrophobacter and Desulfatiglans) were observed. Overall, our findings demonstrated amendment with different types of biochar altered SCFA profile, Fe(III) reduction and bacterial biodiversity in rice paddy soil.


Asunto(s)
Oryza , Contaminantes del Suelo , Carbón Orgánico , Ácidos Grasos Volátiles , Compuestos Férricos , ARN Ribosómico 16S/genética , Suelo , Contaminantes del Suelo/análisis
6.
Sci Rep ; 7: 45923, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368035

RESUMEN

The coexistence of nontrivial topology and giant Rashba splitting, however, has rare been observed in two-dimensional (2D) films, limiting severely its potential applications at room temperature. Here, we through first-principles calculations to propose a series of inversion-asymmetric group-IV films, ABZ2 (A ≠ B = Si, Ge, Sn, Pb; Z = F, Cl, Br), whose stability are confirmed by phonon spectrum calculations. The analyses of electronic structures reveal that they are intrinsic 2D TIs with a bulk gap as large as 0.74 eV, except for GeSiF2, SnSiCl2, GeSiCl2 and GeSiBr2 monolayers which can transform from normal to topological phases under appropriate tensile strain of 4, 4, 5, and 4%, respectively. The nontrivial topology is identified by Z2 topological invariant together with helical edge states, as well as the berry curvature of these systems. Another prominent intriguing feature is the giant Rashba spin splitting with a magnitude reaching 0.15 eV, the largest value reported in 2D films so far. The tunability of Rashba SOC and band topology can be realized through achievable compressive/tensile strains (-4 ~ 6%). Also, the BaTe semiconductor is an ideal substrate for growing ABZ2 films without destroying their nontrivial topology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA