Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(8): 3870-3881, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38356223

RESUMEN

Metal-organic frameworks (MOFs) have shown promising potential as proton-conducting materials due to their tunable structures and high porosity. In this study, two novel MOFs had been successfully synthesized, one containing sulfate groups (MOF-1; [Zn4(TIPE)2(SO4)4(H2O)]·5H2O) and the other containing sulfonate groups (MOF-2; [Zn2(TIPE)(5-sip)(NO3)0.66]·0.34NO3·17.5H2O) (TIPE = 1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H35-sip = 5-sulfoisophthalicacid), and the effect of the two groups on the proton conductivity of Zn-based MOFs had been investigated and compared for the first time. The proton conductivity of these MOFs was systematically measured at different temperatures and humidity conditions. Remarkably, the results revealed significant differences in proton conductivity between the two sets of MOFs. At 90 °C and 98% RH, MOF-1 and MOF-2 achieved optimal proton conductivity of 4.48 × 10-3 and 5.69 × 10-2 S·cm-1, respectively. This was due to the structural differences arising from the presence of different functional groups, which subsequently affected the porosity and hydrophilicity, thereby influencing the proton conductivity. Overall, this comparative study revealed the influence of sulfate and sulfonate groups on the proton conductivity of Zn-based MOFs. This research provided a feasible idea for the development of advanced MOF materials with enhanced proton conductivity and opened up new possibilities for their application in proton devices.

2.
Dalton Trans ; 52(43): 15940-15949, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37843307

RESUMEN

Anions play a significant role in the construction of metal-organic frameworks (MOFs). Anions can affect coordination between metal ions and organic ligands, and the formation of crystal structures, thereby affecting the structure and properties of MOFs. Two novel 3D porous MOFs ({[Cd3(TIPE)2(SO4)1.6(H2O)2.4]·2.8OH·6.2H2O}n (MOF-1) and {[Cd3(TIPE)2(SO4)3(H2O)2]·10H2O}n (MOF-2)) were successfully synthesized, by introducing SO42- to design and adjust their structure and properties, in which the sulfate ions not only participated in coordination but also played a bridging role. Both MOF-1 and MOF-2 exhibited high stability and strong fluorescence properties, and their fluorescence properties also changed compared to those of previously reported 2D nonporous MOF-3 ({[Cd2(TIPE)2Cl3(ACN)]·CdCl3·3H2O}n) with an identical ligand. They could also be used in combination with MOF-3 to distinguish between Fe3+ and Cr2O72- ions, due to a change in their fluorescence properties. In this work, the structure was reshaped by introducing sulfate ions, and the role and function of the sulfate ions in the structure were studied, providing a feasible idea for the design and precise regulation of MOFs.

3.
Inorg Chem ; 62(15): 5972-5983, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37015890

RESUMEN

The modification of metal-organic framework (MOF) materials to facilitate their practical applications is an extremely challenging and meaningful topic. In this work, two stepwise modification strategies for MOFs were conducted. First, we have demonstrated a single-crystal-to-single-crystal (SCSC) transformation from a microporous three-dimensional (3D) MOF to a two-dimensional (2D) coordination polymer (CP). The centrosymmetric [Cd(3-bpdb)(MeO-ip)]n (1) transforms into a chiral [Cd2(3-bpdb)(MeO-ip)2(CH3OH)2]n (2), which is triggered by the reaction time with methanol that acts as a structure-directing agent. The conversion relationship of 1 to 2 at different reaction times was studied in detail. Density functional theory (DFT) calculations clearly state that the irreversible formation of 2 is thermodynamically favorable. Intriguingly, 2 exhibits good proton conduction of 1.34 × 10-3 S cm-1 under 363 K and 98% relative humidity (RH) due to unique H-bond network characteristics. To the best of our knowledge, there are very few cases of 3D to 2D SCSC transformation stimulated by reaction time. The results have important implications for understanding the SCSC transformation mechanism and synthetic chemistry. On the other hand, the lanthanide3+-functionalized hybrids (Ln3+-MOF), Ln3+@1, were continuously prepared by incorporating luminescent Ln3+ ions into the structure of 1 through encapsulating post-synthesis modification (PSM). Tb3+@1 exhibits double emission in water and shows visual ratiometric fluorescence behavior for sensing glutamic acid (Glu), tryptophan (Trp), and Al3+, which is more reliable and accurate than single emission. Our work may not only provide new insights into the multiple modification of MOF materials but also promote the practical application of such materials.

4.
Chemistry ; 28(60): e202203105, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36253120

RESUMEN

Invited for the cover of this issue are the groups of Lin Du and Qi-Hua Zhao at Yunnan University. The image depicts astronauts as protons moving along the hydrogen-bond network in the channel of Eu-ETTB/Gd-ETTB. Read the full text of the article at 10.1002/chem.202202154.

5.
Chemistry ; 28(60): e202202154, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36048743

RESUMEN

In this work, the two example rare earth-based metal-organic frameworks (LaIII -based MOFs), Eu-ETTB and Gd-ETTB, were obtained by self-assembly. Both materials showed extremely high proton conductivity, with the proton conductivity of Eu-ETTB being 1.53×10-2  S cm-1 at 98 % relative humidity (RH) and 85 °C and that of Gd-ETTB being 2.63×10-2  S cm-1 at 98 % RH and 75 °C. This was almost the best performance observed for three-dimensional porous MOFs without post-synthetic modification and was based on milder conditions than for most materials. Furthermore, cycle test experiments and continuous work tests showed that both materials had excellent performance both in terms of stability and durability. Water vapor adsorption experiments showed that a large number of water molecules are adsorbed the hydrogen-bond network's being rebuilt by the adsorbed water molecules in the pore channel and thus optimizing the channels for proton transfer explained the MOF's high performance.

6.
ACS Omega ; 7(12): 10187-10195, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35382326

RESUMEN

Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).

7.
Molecules ; 25(2)2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31963434

RESUMEN

Three novel Zn-based coordination polymers (CPs), [Zn(MIPA)]n (1), {[Zn(MIPA)(4,4'-bipy)0.5(H2O)]·1.5H2O}n (2), and {[Zn(MIPA)(bpe)]·H2O}n (3) (MIPA = 4-methoxyisophthalic acid, 4,4'-bipy = 4,4'-bipyridine, bpe = (E)-1,2-di(pyridine-4-yl)ethane), were constructed by ligand 4-methoxyisophthalic acid under solvothermal conditions. Compound 1 features a beaded 2D-layer architecture, while compound 2 presents a 2-fold interpenetrating structure with a uninodal three-connected hcb topology. Compound 3 has a 3-fold interpenetrated four-connected dmp topology. Photoluminescence investigations of compound 2 were explored in detail, by which ions were detected, and it was observed to have the highest quenching efficiency toward Al3+ and S2- ions. The possible fluorescence quenching mechanisms of 2 toward Al3+ and S2- ions were also explored. To the best of our knowledge, this is the first potential dual-responsive luminescent probe based on a Zn(II) coordination polymer for detecting Al3+ and S2- ions via a luminescence quenching effect in ethanol.


Asunto(s)
Aluminio/análisis , Polímeros/síntesis química , Sulfuros/análisis , Zinc/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Fluorescencia , Iones , Estructura Molecular , Polímeros/química
8.
RSC Adv ; 9(68): 39854-39857, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-35541376

RESUMEN

A 3D metal-organic framework {[Cd(5-Brp)(dpa)]·0.5DMF·H2O} n (1) was successfully synthesized and characterized, which markedly recognized iron ions under the induction of an amino group. With the concentration of Fe3+ increasing, the emission of 1 first declined, then enhanced with a red shift and was finally quenched, which was different from the reference compound [Cd(5-Brp)(bpp)(H2O)] n (2). This result drew our attention to amine induced ion-exchange. This peculiar phenomenon inspired us to construct an effective ion detector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...