Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
J Sci Food Agric ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248104

RESUMEN

BACKGROUND: Borreria latifolia (Aubl.) K. Schum (Rubiaceae) is an annual weed with a strong allelopathic inhibitory effect on malignant weeds in orchards in southern China. This study was carried out to investigate its allelopathic potential and to identify allelochemicals present in B. latifolia. RESULTS: Aqueous extracts of B. latifolia inhibited the germination and radicle growth of Eleusine indica and the radicle growth of Bidens alba in a dose-dependent manner. However, only the high-concentration treatment at 50 mg mL-1 delayed the germination of B. alba and Digitaria sanguinalis. Among the root, stem, and leaf aqueous extracts of B. latifolia, the leaf extract had the strongest inhibitory effects on the germination and seedling growth of E. indica, followed by stem extract and then root extract. A total of 47 published allelochemicals, including coumarin, 4-hydroxybenzoate, salicylic acid, 4-hydroxycinnamic acid, and vanillic acid, were identified in the leaf extract. Among the five allelochemicals, coumarin was found to be present in the highest concentration in the leaf extract. Furthermore, coumarin exhibited a significantly greater inhibitory effect on E. indica (EC50 = 36.87 mg L-1) than did the other allelochemicals (EC50 = 100.87-156.30 mg L-1). CONCLUSION: This study indicates that the leaf extracts of B. latifolia and their allelochemicals have excellent potential as bioherbicides and that coumarin is one of the key allelochemicals in B. latifolia. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 277(Pt 2): 134367, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089562

RESUMEN

The protein aggregation induced by UHT treatment shortens the shelf life of UHT milk. However, the mechanism of ß-Lg induced casein micelle aggregation remains unclear. Herein, the dynamic interaction between ß-Lg and casein micelles during UHT processing was investigated by experimental techniques and molecular dynamics simulations. Results showed that ß-Lg decreased the stability of casein micelles, increased their size and zeta potential. Raman and FTIR spectra analysis suggested that hydrogen and disulfide bonds facilitated their interaction. Cryo-TEM showed that the formation of the casein micelle/ß-Lg complex involved rigid binding, flexible linking, and severe cross-linking aggregation during UHT processing. SAXS and MST demonstrated ß-Lg bound to κ-casein on micelle surfaces with a dissociation constant (Kd) of 3.84 ± 1.14 µm. Molecular docking and dynamic simulations identified the interacting amino acid residues and clarified that electrostatic and van der Waals forces drove the interaction. UHT treatment increased hydrogen bonds and decreased total binding energy. The non-covalent binding promoted the formation of disulfide bonds between ß-Lg and casein micelles under heat treatment. Ultimately, it was concluded that non-covalent interaction and disulfide bonding resulted in casein micelle/ß-Lg aggregates. These findings provided scientific insights into protein aggregation in UHT milk.


Asunto(s)
Caseínas , Lactoglobulinas , Micelas , Leche , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Caseínas/química , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Animales , Leche/química , Calor , Enlace de Hidrógeno , Unión Proteica , Agregado de Proteínas
3.
Mol Cancer ; 23(1): 161, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118167

RESUMEN

This commentary offers a thoughtful discussion of the study by Wei et al. published in the journal on the role of Olfactomedin 4 (OLFM4) in incomplete intestinal metaplasia, a gastric precancerous condition. The original paper introduces OLFM4 as a novel biomarker with potential enhanced diagnostic efficacy compared to established markers. However, several methodological and interpretive considerations are noted. The histopathological findings could be refined by using higher magnification to better elucidate the cellular localization of OLFM4. Including high-resolution images for key stainings would enhance the study's robustness in expression profiling. The statistical approach could be strengthened by employing more rigorous, quantitative methodologies. Additionally, integrating immunofluorescence double-staining may improve the reliability of the results. Discrepancies in immunohistochemical signals across datasets suggest a need for further investigation into tissue section representativeness. Clarifying the term "precancerous lesions of gastric carcinoma cells" to align with widely accepted definitions would enhance clarity. The choice of the GES-1 cell model treated with MNNG could be reconsidered in favor of more established models such as organoids, air-liquid interface models, and gastric cancer-specific cell lines. The in vivo MNNG-alcohol combination model might require additional empirical support, given the limited and conflicting literature on this approach, to ensure an accurate portrayal of IM pathogenesis. The commentary concludes with a call for stringent and standardized methodologies in biomarker research to ensure the clinical applicability and reliability of biomarker studies, particularly in the context of gastric cancer detection and intervention.


Asunto(s)
Biomarcadores de Tumor , Factor Estimulante de Colonias de Granulocitos , Lesiones Precancerosas , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Factor Estimulante de Colonias de Granulocitos/metabolismo
4.
J Agric Food Chem ; 72(30): 17041-17050, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024493

RESUMEN

Plasmin-induced protein hydrolysis significantly compromises the stability of ultrahigh-temperature (UHT) milk. ß-Lactoglobulin (ß-Lg) was observed to inhibit plasmin activity, suggesting that there were active sites as plasmin inhibitors in ß-Lg. Herein, plasmin inhibitory peptides were explored from ß-Lg using experimental and computational techniques. The results revealed that increased denaturation of ß-Lg enhanced its affinity for plasmin, leading to a stronger inhibition of plasmin activity. Molecular dynamics simulations indicated that electrostatic and van der Waals forces were the primary binding forces in the ß-Lg/plasmin complex. Denatured ß-Lg increased hydrogen bonding and reduced the binding energy with plasmin. The sites of plasmin bound to ß-Lg were His624, Asp667, and Ser762. Four plasmin inhibitory peptides, QTMKGLDI, EKTKIPAV, TDYKKYLL, and CLVRTPEV, were identified from ß-Lg based on binding sites. These peptides effectively inhibited plasmin activity and enhanced the UHT milk stability. This study provided new insights into the development of novel plasmin inhibitors to improve the stability of UHT milk.


Asunto(s)
Fibrinolisina , Lactoglobulinas , Leche , Lactoglobulinas/química , Animales , Leche/química , Fibrinolisina/química , Fibrinolisina/metabolismo , Fibrinolisina/antagonistas & inhibidores , Bovinos , Calor , Almacenamiento de Alimentos , Simulación de Dinámica Molecular , Antifibrinolíticos/química , Péptidos/química , Péptidos/farmacología
5.
Tissue Cell ; 89: 102414, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865824

RESUMEN

Varicocele (VC) refers to expansion and tortuosity of spreading venous plexus in spermatic cord due to poor blood flow. This study aimed to investigate effects of Shugan Tongluo Qiangjing recipe (SGTL) on sperm DNA damage and oxidative stress in experimental VC (EVC) rats. EVC model was established by partial ligation of left renal vein. Spermatic vein diameter, testicular weight, sperm DNA fragmentation index (DFI) were evaluated. Telomere reverse transcriptase (TERT) expression, telomere gene transcription, and testicular tissue morphology were determined·H2O2, catalase, SOD, T-AOC were measured with colorimetry. SGTL significantly decreased spermatic vein diameter (P=0.000) and increased testicular weight (P=0.013) of rats compared those of EVC rats. SGTL maintained testicular tissue morphology in EVC rats. SGTL markedly reduced sperm DFI value in sperm of rats compared to EVC rats (P=0.000). SGTL significantly enhanced TERT expression and telomere gene transcription (P=0.028) in testis of rats compared to EVC rats. SGTL reduced H2O2 levels (P=0.001) and promoted CAT activity (P=0.016), SOD activity (P=0.049), and T-AOC activity (P=0.047) of rats, compared to EVC rats. In conclusion, SGTL could reduce pathogenic process of EVC by reducing sperm DNA damage and regulating telomere length in EVC rats, which may be related to oxidative stress regulation.


Asunto(s)
Daño del ADN , Medicamentos Herbarios Chinos , Estrés Oxidativo , Espermatozoides , Telómero , Varicocele , Animales , Masculino , Estrés Oxidativo/efectos de los fármacos , Varicocele/patología , Varicocele/metabolismo , Telómero/efectos de los fármacos , Telómero/metabolismo , Daño del ADN/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacología , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/patología , Ratas Sprague-Dawley
6.
Food Chem ; 456: 140012, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38876066

RESUMEN

Age gelation is undesirable for direct UHT (dUHT) milk, which is closely related to protein hydrolysis. However, little information is available for the role of serum peptides during the age gelation. In this study, the composition and protein morphology of serum phase were characterized by RP-HPLC, ICP-MS and TEM. The results showed significant increases in soluble proteins, free amino acids, calcium, and phosphorus from casein micelles, indicating protein hydrolysis and peptide release into the serum phase. 23,466 peptides derived from caseins and other proteins were identified in serum phase by peptidomics. The serum peptide profiles of age gelation milk changed dramatically. Peptide fingerprinting revealed that plasmin and cathepsin contributed to the protein hydrolysis during age gelation, with a significant increase in their activity observed. 23 characteristic peptides were ultimately selected as potential indicators for age gelation. These findings provide new insights into the age gelation of UHT milk.


Asunto(s)
Leche , Péptidos , Animales , Leche/química , Péptidos/química , Bovinos , Geles/química , Proteómica , Caseínas/química , Proteínas de la Leche/química , Hidrólisis
7.
Huan Jing Ke Xue ; 45(6): 3700-3707, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897789

RESUMEN

In recent years, research on microplastics has mostly focused on thermoplastic materials, and there is a lack of research on the pollution status and environmental behavior of tire microplastics, a type of rubber elastomers. In order to investigate the aging and small-sized particles release characteristics of tire microplastics in various environmental media, the aging process of two different tire microplastics, one for cars and the other for electric bicycles, was simulated in dry and aquatic environments under laboratory conditions. The results showed that the tire microplastics would be aged after 30 d of UV illumination, which was manifested by the roughness of the surface and the appearance of cracks and flaking. The Fourier infrared spectra showed that the carbonyl index of the surface also increased. In addition, tire microplastics released a large number of small sub-micron particles under the influence of UV illumination and hydrodynamic action, and the number of particles released from car tire microplastics in aquatic environments reached 694.8 million particles per milliliter of solution at 30 d of the UV light condition, among which 694.6 million particles with a particle size of less than 1 µm were released, which was approximately 100 times of that in the dark condition. The study showed that tire microplastics in aquatic environments were more susceptible to aging and released more small particles under light conditions and that car tire microplastics released more small particles than electric bicycle tire microplastics, posing ecological and environmental risks.

8.
Sci Adv ; 10(21): eadk7557, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787949

RESUMEN

Information metasurface has shown great potential in wireless communications owing to its ability to flexibly control electromagnetic waves. However, it is still a big challenge to achieve high-security and large-channel capacity wireless communications by a simple system. Here, we propose a space-polarization-division multiplexing secure wireless communication system with information camouflage capability based on the information metasurface, which can realize multichannel encrypted wireless communications with different polarization coding strategies independently and simultaneously. A polarization mask key is introduced to encrypt the target message, and the cipher message is further concealed behind a cover image with steganography and sent to the user by using the polarization modulation strategy. Different polarization mask keys can be adopted in each individual communication by changing the polarization coding strategy to enhance the system security. The proposed scheme integrates computational algorithm encryption and physical layer security together and thus has the advantages of high security, large channel capacity, and strong camouflage ability.

9.
Pest Manag Sci ; 80(8): 4098-4109, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38578108

RESUMEN

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.


Asunto(s)
Antibacterianos , Estilbenos , Factores de Virulencia , Xanthomonas , Xanthomonas/efectos de los fármacos , Xanthomonas/patogenicidad , Estilbenos/farmacología , Estilbenos/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Oryza/microbiología , Amino Alcoholes/farmacología , Amino Alcoholes/química , Biopelículas/efectos de los fármacos
10.
J Am Chem Soc ; 146(14): 9631-9639, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530981

RESUMEN

The induced structural transformation provides an efficient way to precisely modulate the fine structures and the corresponding performance of gold nanoclusters, thus constituting one of the important research topics in cluster chemistry. However, the driving forces and mechanisms of these processes are still ambiguous in many cases, limiting further applications. In this work, based on the unique coordination mode of the pincer ligand-stabilized gold nanocluster Au8(PNP)4, we revealed the site-recognition mechanism for induced transformations of gold nanoclusters. The "open nitrogen sites" on the surface of the nanocluster interact with different inducers including organic compounds and metals and trigger the conversion of Au8(PNP)4 to Au13 and Au9Ag4 nanoclusters, respectively. Control experiments verified the site-recognition mechanism, and the femtosecond and nanosecond transient absorption spectroscopy revealed the electronic and photoluminescent evolution accompanied by the structural transformation.

11.
Nutrients ; 16(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474811

RESUMEN

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Nisina , Ratones , Animales , Nisina/metabolismo , Nisina/farmacología , Leche/metabolismo , ARN Ribosómico 16S/genética , Lactobacillales/metabolismo , Ácido Butírico
12.
Heliyon ; 10(6): e27819, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496853

RESUMEN

Background: The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods: Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results: A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion: Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.

13.
J Agric Food Chem ; 72(13): 6900-6912, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513076

RESUMEN

As a notorious phytopathogenic virus, the tobacco mosaic virus (TMV) severely reduced the quality of crops worldwide and caused critical constraints on agricultural production. The development of novel virucides is a persuasive strategy to address this predicament. Herein, a series of novel bisamide-decorated benzotriazole derivatives were elaborately prepared and screened. Biological tests implied that the optimized compound 7d possessed the most brilliant antiviral inactive profile (EC50 = 157.6 µg/mL) and apparently surpassed that of commercial ribavirin (EC50 = 442.1 µg/mL) 2.8-fold. The preliminary antiviral mechanism was elaborately investigated via transmission electron microscopy, microscale thermophoresis (MST) determination, RT-qPCR, and Western blot analysis. The results showed that compound 7d blocked the assembly of TMV by binding with coat protein (Kd = 0.7 µM) and suppressed TMV coat protein gene expression and biosynthesis process. Computational simulations indicated that 7d displayed strong H-bonds and pi interactions with TMV coat protein, affording a lower binding energy (ΔGbind = -17.8 kcal/mol) compared with Ribavirin (ΔGbind = -10.7 kcal/mol). Overall, current results present a valuable perception of bisamide decorated benzotriazole derivatives with appreciably virustatic competence and should be profoundly developed as virucidal candidates in agrochemical.


Asunto(s)
Ribavirina , Virus del Mosaico del Tabaco , Triazoles , Relación Estructura-Actividad , Ribavirina/farmacología , Antivirales/farmacología , Antivirales/química , Diseño de Fármacos
14.
Int J Surg ; 110(5): 2757-2764, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349216

RESUMEN

BACKGROUND: This prospective cohort study, conducted at a high-volume esophageal cancer center from July 2019 to July 2022, aimed to investigate the link between the right gastroepiploic artery (RGEA) length and anastomotic leakage (AL) rates following minimally invasive esophagectomy (MIE). Real-world data on stomach blood supply in the Chinese population were examined. MATERIALS AND METHODS: A total of 516 cases were enrolled, categorized into two groups based on the Youden index-determined optimal cut-off value for the relative length of RGEA (length of RGEA/length of gastric conduit, 64.69%) through ROC analysis: Group SR (short RGEA) and Group LR (long RGEA). The primary observation parameter was the relationship between AL incidence and the ratio of direct blood supply from RGEA. Secondary parameters included the mean length of the right gastroepiploic artery, greater curvature, and the connection type between right and left gastroepiploic vessels. Patient data were prospectively recorded in electronic case report forms. RESULTS: The study revealed median lengths of 43.60 cm for greater curvature, 43.16 cm for the gastric conduit, and 26.75 cm for RGEA. AL, the most common postoperative complication, showed a significant difference between groups (16.88 vs. 8.84%, P =0.01). Multivariable binary logistic regression identified Group SR and LR (odds ratio: 2.651, 95% CI: 1.124-6.250, P =0.03) and Neoadjuvant therapy (odds ratio: 2.479, 95% CI: 1.374-4.473, P =0.00) as independent predictors of AL. CONCLUSIONS: The study emphasizes the crucial role of RGEA length in determining AL incidence in MIE for esophageal cancer. Preserving RGEA and fostering capillary arches between RGEA and LGEA are recommended strategies to mitigate AL risk.


Asunto(s)
Fuga Anastomótica , Neoplasias Esofágicas , Esofagectomía , Arteria Gastroepiploica , Humanos , Esofagectomía/efectos adversos , Neoplasias Esofágicas/cirugía , Fuga Anastomótica/etiología , Fuga Anastomótica/epidemiología , Masculino , Estudios Prospectivos , Femenino , Persona de Mediana Edad , Anciano , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , China/epidemiología
15.
J Agric Food Chem ; 72(9): 4726-4736, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294408

RESUMEN

Milk-derived extracellular vesicles can improve intestinal health and have antiosteoporosis potential. In this paper, we explored the effects of bovine raw milk-derived extracellular vesicles (mEVs) on ovariectomized (OVX) osteoporotic mice from the perspective of the gut-bone axis. mEVs could inhibit osteoclast differentiation and improve microarchitecture. The level of osteoporotic biomarkers in OVX mice was restored after the mEVs intervened. Compared with OVX mice, mEVs could enhance intestinal permeability, reduce endotoxin levels, and improve the expression of TNF-α, IL-17, and IL-10. 16S rDNA sequencing indicated that mEVs altered the composition of gut microbiota, specifically for Bacteroides associated with short-chain fatty acids (SCFAs). In-depth analysis of SCFAs demonstrated that mEVs could restore acetic acid, propionic acid, valeric acid, and isovaleric acid levels in OVX mice. Correlation analysis revealed that changed gut microbiota and SCFAs were significantly associated with gut inflammation and osteoporotic biomarkers. This study demonstrated that mEVs could inhibit osteoclast differentiation and improve osteoporosis by reshaping the gut microbiota, increasing SCFAs, and decreasing the level of pro-inflammatory cytokines and osteoclast differentiation-related factors in OVX mice. These findings provide evidence for the use of mEVs as a food supplement for osteoporosis.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Osteoporosis , Animales , Bovinos , Ratones , Leche , Osteogénesis , Osteoporosis/genética , Biomarcadores
16.
Pest Manag Sci ; 80(2): 805-819, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794206

RESUMEN

BACKGROUND: Naturally occurring alkaloids are particularly suitable for use as pesticide precursors and further modifications due to their cost-effectiveness, unique mechanism of action, tolerable degradation, and environmental friendliness. The famous tobacco mosaic virus (TMV) is a persistent plant pathogenic virus that can parasitize many plants and severely reduce crop production. To treat TMV disease, TMV helicase acts as a crucial target by hydrolyzing adenosine triphosphate (ATP) to provide energy for double-stranded RNA unwinding. RESULTS: To seek novel framework alkaloid leads targeting TMV helicase, this work successfully established an efficient screening platform for TMV helicase inhibitors based on natural alkaloids. In vivo activity screening, enzyme activity detection, and binding assays showed that Rutaecarpine from Evodia rutaecarpa (Juss.) Benth exhibited excellent TMV helicase inhibitory properties [dissociation constant (Kd ) = 1.1 µm, half maximal inhibitory concentration (IC50 ) = 227.24 µm] and excellent anti-TMV ability. Molecular docking and dynamic simulations depicted that Rutaecarpine could stably bind in active pockets of helicase with low binding energy (ΔGbind = -17.8 kcal/mol) driven by hydrogen bonding and hydrophobic interactions. CONCLUSION: Given Rutaecarpine's laudable bioactivity and structural modifiability, it can serve as a privileged building block for further pesticide discovery.


Asunto(s)
Alcaloides , Alcaloides Indólicos , Plaguicidas , Quinazolinonas , Virus del Mosaico del Tabaco , Virosis , Simulación del Acoplamiento Molecular , Nicotiana , Enfermedades de las Plantas/prevención & control
17.
Adv Sci (Weinh) ; 11(5): e2305152, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044308

RESUMEN

Hand gesture plays an important role in many circumstances, which is one of the most common interactive methods in daily life, especially for disabled people. Human-machine interaction is another popular research topic to realize direct and efficient control, making machines intelligent and maneuverable. Here, a special human-machine interaction system is proposed and namedas computer-vision (CV) based gesture-metasurface interaction (GMI) system, which can be used for both direct beam manipulations and real-time wireless communications. The GMI system first needs to select its working mode according to the gesture command to determine whether to perform beam manipulations or wireless communications, and then validate the permission for further operation by recognizing unlocking gesture to ensure security. Both beam manipulation and wireless communication functions are validated experimentally, which show that the GMI system can not only realize real-time switching and remote control of different beams through gesture command, but also communicate with a remote computer in real time by translating the gesture language to text message. The proposed non-contact GMI system has the advantages of good interactivity, high flexibility, and multiple functions, which can find potential applications in community security, gesture-command smart home, barrier-free communications, and so on.

18.
Nutrients ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004116

RESUMEN

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1ß (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Colitis/inducido químicamente , Colitis/prevención & control , Intestinos , Colon , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sulfato de Dextran
19.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834012

RESUMEN

Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo
20.
Meat Sci ; 206: 109322, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666007

RESUMEN

This study was conducted to investigate the effects of dietary supplementation of vitamin E (VE) on growth performance, slaughter performance, antioxidant capacity and meat quality characteristics of finishing bulls. Twenty Yanbian cattle (bulls) with initial body weight (BW) 485 ± 42 kg were randomly divided into two groups (control and treatment groups) and participated in a100-day finishing trial. The control group (CON) was fed a basal diet (total mixed ration, TMR). The treatment group was fed a basal diet supplemented with VE (provided as α-tocopherol acetate, 700 IU/bull/day). VE supplementation significantly increased the average daily gain (ADG) of finishing bulls, the beef marbling score, meat color parameters (a* [redness]), intramuscular fat content, the concentration of catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), VE and matrix metalloproteinases (MMP-13) in the serum and muscle tissue (P < 0.05). VE supplementation significantly decreased drip loss and cooking loss of the beef, the concentration of nitric oxide (NO) in the serum and muscle tissue, the concentration of malondialdehyde in the muscle tissue (P < 0.05), and tended to decrease the feed: gain (P = 0.077) and shear force (P = 0.062) of the beef. In conclusion, VE supplementation can improve the meat quality parameters of finishing bulls, especially the improvement of beef tenderness. The improvement of beef tenderness by VE supplementation may be related to the increase of MMPs concentration, and a potential mechanism for the secretion of MMPs by VE supplementation may be related to its antioxidant capacity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...