Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
World J Diabetes ; 15(7): 1477-1488, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39099806

RESUMEN

BACKGROUND: The glycemic control of children with type 1 diabetes (T1D) may be influenced by the economic status of their parents. AIM: To investigate the association between parental economic status and blood glucose levels of children with T1D using a mobile health application. METHODS: Data from children with T1D in China's largest T1D online community, Tang-TangQuan®. Blood glucose levels were uploaded every three months and parental economic status was evaluated based on annual household income. Children were divided into three groups: Low-income (< 30000 Yuan), middle-income (30000-100000 Yuan), and high-income (> 100000 yuan) (1 Yuan = 0.145 United States Dollar approximately). Blood glucose levels were compared among the groups and associations were explored using Spearman's correlation analysis and multivariable logistic regression. RESULTS: From September 2015 to August 2022, 1406 eligible children with T1D were included (779 female, 55.4%). Median age was 8.1 years (Q1-Q3: 4.6-11.6) and duration of T1D was 0.06 years (0.02-0.44). Participants were divided into three groups: Low-income (n = 320), middle-income (n = 724), and high-income (n = 362). Baseline hemoglobin A1c (HbA1c) levels were comparable among the three groups (P = 0.072). However, at month 36, the low-income group had the highest HbA1c levels (P = 0.036). Within three years after registration, glucose levels increased significantly in the low-income group but not in the middle-income and high-income groups. Parental economic status was negatively correlated with pre-dinner glucose (r = -0.272, P = 0.012). After adjustment for confounders, parental economic status remained a significant factor related to pre-dinner glucose levels (odds ratio = 13.02, 95%CI: 1.99 to 126.05, P = 0.002). CONCLUSION: The blood glucose levels of children with T1D were negatively associated with parental economic status. It is suggested that parental economic status should be taken into consideration in the management of T1D for children.

2.
Glob Chang Biol ; 30(8): e17475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149922

RESUMEN

Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.


Asunto(s)
Bacterias , Metales , Microbiota , Nitrógeno , Microbiología del Suelo , Suelo , Nitrógeno/metabolismo , Suelo/química , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Metales/metabolismo , Hongos/fisiología , Hongos/metabolismo , Pradera , Micorrizas/fisiología , Concentración de Iones de Hidrógeno
3.
Nat Commun ; 15(1): 6800, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122724

RESUMEN

Mg3Sb2-based thermoelectrics show great promise for next-generation thermoelectric power generators and coolers owing to their excellent figure of merit (zT) and earth-abundant composition elements. However, the complexity of the defect microstructure hinders the advancement of high performance. Here, the defect microstructure is modified via In doping and prolonged sintering time to realize the reduced structural disorder and microstructural evolution, synergistically optimizing electron and phonon transport via a delocalization effect. As a result, an excellent carrier mobility of ~174 cm2 V-1 s-1 and an ultralow κ l a t of ~0.42 W m-1 K-1 are realized in this system, leading to an ultrahigh zT of ~2.0 at 723 K. The corresponding single-leg module demonstrates a high conversion efficiency of ~12.6% with a 425 K temperature difference, and the two-pair module of Mg3Sb2/MgAgSb displays ~7.1% conversion efficiency with a 276 K temperature difference. This work paves a pathway to improve the thermoelectric performance of Mg3Sb2-based materials, and represents a significant step forward for the practical application of Mg3Sb2-based devices.

4.
Curr Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151432

RESUMEN

Arousal and motivation interact to profoundly influence behavior. For example, experience tells us that we have some capacity to control our arousal when appropriately motivated, such as staying awake while driving a motor vehicle. However, little is known about how arousal and motivation jointly influence decision computations, including if and how animals, such as rodents, adapt their arousal state to their needs. Here, we developed and show results from an auditory, feature-based, sustained-attention task with intermittently shifting task utility. We use pupil size to estimate arousal across a wide range of states and apply tailored signal-detection theoretic, hazard function, and accumulation-to-bound modeling approaches in a large cohort of mice. We find that pupil-linked arousal and task utility both have major impacts on multiple aspects of task performance. Although substantial arousal fluctuations persist across utility conditions, mice partially stabilize their arousal near an intermediate and optimal level when task utility is high. Behavioral analyses show that multiple elements of behavior improve during high task utility and that arousal influences some, but not all, of them. Specifically, arousal influences the likelihood and timescale of sensory evidence accumulation but not the quantity of evidence accumulated per time step while attending. In sum, the results establish specific decision-computational signatures of arousal, motivation, and their interaction in attention. So doing, we provide an experimental and analysis framework for studying arousal self-regulation in neurotypical brains and in diseases such as attention-deficit/hyperactivity disorder.

5.
medRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39132480

RESUMEN

Background: Computed tomography attenuation correction (CTAC) scans are routinely obtained during cardiac perfusion imaging, but currently only utilized for attenuation correction and visual calcium estimation. We aimed to develop a novel artificial intelligence (AI)-based approach to obtain volumetric measurements of chest body composition from CTAC scans and evaluate these measures for all-cause mortality (ACM) risk stratification. Methods: We applied AI-based segmentation and image-processing techniques on CTAC scans from a large international image-based registry (four sites), to define chest rib cage and multiple tissues. Volumetric measures of bone, skeletal muscle (SM), subcutaneous, intramuscular (IMAT), visceral (VAT), and epicardial (EAT) adipose tissues were quantified between automatically-identified T5 and T11 vertebrae. The independent prognostic value of volumetric attenuation, and indexed volumes were evaluated for predicting ACM, adjusting for established risk factors and 18 other body compositions measures via Cox regression models and Kaplan-Meier curves. Findings: End-to-end processing time was <2 minutes/scan with no user interaction. Of 9918 patients studied, 5451(55%) were male. During median 2.5 years follow-up, 610 (6.2%) patients died. High VAT, EAT and IMAT attenuation were associated with increased ACM risk (adjusted hazard ratio (HR) [95% confidence interval] for VAT: 2.39 [1.92, 2.96], p<0.0001; EAT: 1.55 [1.26, 1.90], p<0.0001; IMAT: 1.30 [1.06, 1.60], p=0.0124). Patients with high bone attenuation were at lower risk of death as compared to subjects with lower bone attenuation (adjusted HR 0.77 [0.62, 0.95], p=0.0159). Likewise, high SM volume index was associated with a lower risk of death (adjusted HR 0.56 [0.44, 0.71], p<0.0001). Interpretations: CTAC scans obtained routinely during cardiac perfusion imaging contain important volumetric body composition biomarkers which can be automatically measured and offer important additional prognostic value. Research in context: Evidence before this study: Fully automated volumetric body composition analysis of chest computed tomography attenuation correction (CTAC) can be obtained in patients undergoing myocardial perfusion imaging. This new information has potential to significantly improve risk stratification and patient management. However, the CTAC scans have not been utilized for body composition analysis to date. We searched PubMed and Google Scholar for existing body composition related literature on June 5, 2024, using the search term ("mortality") AND ("risk stratification" OR "survival analysis" OR "prognostic prediction" OR "prognosis") AND ("body composition quantification" OR "body composition analysis" OR "body composition segmentation"). We identified 34 articles either exploring body composition segmentation or evaluating clinical value of body composition quantification. However, to date, all the prognostic evaluation is performed for quantification of three or fewer types of body composition tissues. Within the prognostic studies, only one used chest CT scans but utilized only a few specified slices selected from the scans, and not a standardized volumetric analysis. None of these previous efforts utilized CTAC scans, and none included epicardial adipose tissue in comprehensive body composition analysis.Added value of this study: In this international multi-center study, we demonstrate a novel artificial intelligence-based annotation-free approach for segmenting six key body composition tissues (bone, skeletal muscle, subcutaneous adipose tissue, intramuscular adipose tissue, epicardial adipose tissue, and visceral adipose tissue) from low-dose ungated CTAC scans, by exploiting existing CT segmentation models and image processing techniques. We evaluate the prognostic value of metrics derived from volumetric quantification of CTAC scans obtained during cardiac imaging, for all-cause mortality prediction in a large cohort of patients. We reveal strong and independent associations between several volumetric body composition metrics and all-cause mortality after adjusting for existing clinical factors, and available cardiac perfusion and atherosclerosis biomarkers.Implications of all the available evidence: The comprehensive body composition analysis can be routinely performed, at the point of care, for all cardiac perfusion scans utilizing CTAC. Automatically-obtained volumetric body composition quantification metrics provide added value over existing risk factors, using already-obtained scans to significantly improve the risk stratification of patients and clinical decision-making.

6.
Medicine (Baltimore) ; 103(32): e39261, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121274

RESUMEN

Effective internal fixation with pedicle screw is a key factor in the success of lumbar fusion with internal fixation. Whether navigation robots can improve the efficacy and safety of screw placement is controversial. Thirty-eight patients who underwent oblique lateral lumbar interbody fusion internal fixation from March 2022 to May 2023 were retrospectively analyzed, 16 cases in the navigational robot group and 22 cases in the fluoroscopy group. Using visual analog score (VAS) for the low back and lower limbs, Oswestry Disability Index to compare the clinical efficacy of the 2 groups; using perioperative indexes such as the duration of surgery, intraoperative blood loss, intraoperative fluoroscopy times, and postoperative hospital stay to compare the safety of the 2 groups; and using accuracy of pedicle screws (APS) and the facet joint violation (FJV) to compare the accuracy of the 2 groups. Postoperative follow-up at least 6 months, there was no statistically significant difference between the 2 groups in the baseline data (P > .05). The navigational robot group's VAS-back was significantly lower than the fluoroscopy group at 3 days postoperatively (P < .05). However, the differences between the 2 groups in VAS-back at 3 and 6 months postoperatively, and in VAS-leg and Oswestry Disability Index at 3 days, 3 months, and 6 months postoperatively were not significant (P > .05). Although duration of surgery in the navigational robot group was significantly longer than in the fluoroscopy group (P > .05), the intraoperative blood loss and the intraoperative fluoroscopy times were significantly lower than in the fluoroscopy group (P < .05). The difference in the PHS between the 2 groups was not significant (P > .05). The APS in the navigation robot group was significantly higher than in the fluoroscopy group, and the rate of FJV was significantly lower than in the fluoroscopy group (P < .05). Compared with the traditional fluoroscopic technique, navigation robot-assisted lumbar interbody fusion with internal fixation provides less postoperative low back pain in the short term, with less trauma, less bleeding, and lower radiation exposure, as well as better APS and lower FJV, resulting in better clinical efficacy and safety.


Asunto(s)
Vértebras Lumbares , Procedimientos Quirúrgicos Robotizados , Fusión Vertebral , Humanos , Estudios Retrospectivos , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/instrumentación , Femenino , Masculino , Persona de Mediana Edad , Vértebras Lumbares/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Fluoroscopía/métodos , Anciano , Tornillos Pediculares , Resultado del Tratamiento , Degeneración del Disco Intervertebral/cirugía , Tempo Operativo , Pérdida de Sangre Quirúrgica/estadística & datos numéricos
7.
Food Chem ; 460(Pt 3): 140734, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39106751

RESUMEN

Angiotensin I-converting enzyme (ACE) regulates blood pressure through the renin-angiotensin system. Douchi, a traditional fermented soybean condiment, may have antihypertensive effects, but research on ACE inhibitory peptides from Douchi hydrolysates is limited. We hypothesized that enzymatic treatment could enhance ACE inhibitory peptide diversity and efficacy. We tested ten single enzymes and four combinations, finding pepsin-trypsin-chymotrypsin most effective. Hydrolysates were purified using Sephadex G-15 and reversed-phase HPLC, and peptides were identified via LC-MS/MS. Five peptides (LF, VVF, VGAW, GLFG, NGK) were identified, with VGAW as the most potent ACE inhibitor (IC50 46.6 ± 5.2 µM) showing excellent thermal and pH stability. Lineweaver-Burk plots confirmed competitive inhibition, and molecular docking revealed eight hydrogen bonds between VGAW and ACE. In hypertensive rats, VGAW significantly reduced blood pressure at 12.5, 25, and 50 mg/kg. These findings highlight Douchi as a source of ACE inhibitory peptides and suggest VGAW as a promising functional food ingredient.

8.
Elife ; 122024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037765

RESUMEN

Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between 'bimodal cells' showing interleaved phase precession and procession, and 'unimodal cells' in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells' firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.


Asunto(s)
Potenciales de Acción , Células de Lugar , Ritmo Teta , Animales , Ritmo Teta/fisiología , Células de Lugar/fisiología , Potenciales de Acción/fisiología , Modelos Neurológicos , Hipocampo/fisiología , Hipocampo/citología , Adaptación Fisiológica , Ratas
9.
Artículo en Inglés | MEDLINE | ID: mdl-39078055

RESUMEN

OBJECTIVE: This study aimed to analyze the pharmacokinetic (PK) characteristics, safety, and bioequivalence (BE) of a test (T) preparation of a nifedipine controlled-release tablet and the reference (R) drug (Adalat GTIS) in Chinese study participants in the context of fasting and postprandial states. MATERIALS AND METHODS: An open-label, single-center, randomized, single-dose, two-period study was designed including two separate arms, one with administration under fasting conditions and one with administration under postprandial conditions (high-fat, high-calorie breakfast). After oral administration, the nifedipine concentrations in plasma were quantitatively analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) at regular intervals. Primary PK parameters, including the area under the concentration curve from 0 to infinity (AUC0-∞), the area under the concentration profile from 0 to the last measurable concentration time (AUC0-t), and maximal measured plasma concentration (Cmax) were log-transformed with BE limits of 80 - 125% to evaluate BE. All adverse events (AEs) were wholly supervised. RESULTS: The PK profiles of the T and R formulations were comparable to each other under both fasting and postprandial conditions. The 90% confidence intervals (CIs) of the AUC0-∞, AUC0-t, and Cmax were 92.69 - 106.06%, 93.32 - 107.05%, and 99.53 - 116.71%, respectively, under the fasting state. The 90% CIs of the AUC0-∞, AUC0-t, and Cmax were 105.05 - 117.40%, 105.43 - 117.82%, and 102.66 - 116.30%, respectively, in the postprandial arm. 47 cases of drug-associated AEs were noted in the entire research. CONCLUSION: Under both the fasting and postprandial states, the two nifedipine controlled-release formulations were bioequivalent and safe in healthy Chinese subjects.

10.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062854

RESUMEN

The wild strawberry (Fragaria vesca L.; F. vesca) represents a resilient and extensively studied model organism. While the AP2/ERF gene family plays a pivotal role in plant development, its exploration within F. vesca remains limited. In this study, we characterized the AP2/ERF gene family in wild strawberries using the recently released genomic data (F. vesca V6.0). We conducted an analysis of the gene family expansion pattern, we examined gene expression in stem segments and leaves under cold conditions, and we explored its functional attributes. Our investigation revealed that the FvAP2/ERF family comprises 86 genes distributed among four subfamilies: AP2 (17), RAV (6), ERF (62), and Soloist (1). Tandem and segmental duplications significantly contributed to the growth of this gene family. Furthermore, predictive analysis identified several cis-acting elements in the promoter region associated with meristematic tissue expression, hormone regulation, and resistance modulation. Transcriptomic analysis under cold stress unveiled diverse responses among multiple FvAP2/ERFs in stem segments and leaves. Real-time fluorescence quantitative reverse transcription PCR (RT-qPCR) results confirmed elevated expression levels of select genes following the cold treatment. Additionally, overexpression of FvERF23 in Arabidopsis enhanced cold tolerance, resulting in significantly increased fresh weight and root length compared to the wild-type control. These findings lay the foundation for further exploration into the functional roles of FvAP2/ERF genes.


Asunto(s)
Fragaria , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas , Fragaria/genética , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Respuesta al Choque por Frío/genética , Regiones Promotoras Genéticas
11.
Int Immunopharmacol ; 139: 112744, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059098

RESUMEN

OBJECTIVE: Sepsis-associated encephalopathy (SAE) can lead to severe cerebral dysfunction as well as cognitive dysfunction, resulting in a significant disease burden. 3-Methyladenine (3-MA) has been confirmed to have anti-inflammatory effects on diseases characterized by enhanced autophagy. However, its role in SAE has not been clarified. METHODS: An SAE mouse model was generated by intraperitoneal injection of lipopolysaccharide (LPS). Mice were given 5, 20, or 80 mg/kg 3-MA to determine the therapeutic dose. The mice in the different groups were given 20 mg/kg 3-MA or saline, and survival, body temperature, body weight and neurobehavioral scores were measured at different time points. The expression of autophagy-related proteins and inflammatory factors was detected by Western blotting, enzyme linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR) 12 h after LPS induction. Glial activation and neuronal injury in the hippocampus were detected by immunofluorescence staining and HE staining. The open Field test, novel object recognition (NOR) test, Y-maze test, and Morris water maze (MWM) test were performed to assess cognitive function. RESULTS: Treatment with 20 or 80 mg/kg 3-MA reduced the increase in hippocampal TNF-α, IL-6, and IL-1ß expression in SAE model mice, with 20 mg/kg 3-MA having the greatest therapeutic effect. Treatment with 20 mg/kg 3-MA effectively reduced the expression of hippocampal autophagy-related proteins and mortality, ameliorated hypothermia, decreased body weight and electroencephalography (EEG) performance, and attenuated the activation of neuroglia and neuronal damage. Moreover, it alleviated the cognitive dysfunction 2 weeks after LPS induction. CONCLUSIONS: 3-MA reduced neuroglial activation and neuronal damage, attenuated neuroinflammation, and improved cognitive deficits during recovery period by inhibiting autophagy in SAE.


Asunto(s)
Adenina , Autofagia , Cognición , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Encefalopatía Asociada a la Sepsis , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Autofagia/efectos de los fármacos , Adenina/análogos & derivados , Adenina/farmacología , Masculino , Ratones , Cognición/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Citocinas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología
12.
Int J Nanomedicine ; 19: 7165-7183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050873

RESUMEN

Background: Exosomal microRNAs (miRNAs) in the tumor microenvironment play crucial roles in tumorigenesis and tumor progression by participating in intercellular cross-talk. However, the functions of exosomal miRNAs and the mechanisms by which they regulate esophageal squamous cell carcinoma (ESCC) progression are unclear. Methods: RNA sequencing and GEO analysis were conducted to identify candidate exosomal miRNAs involved in ESCC development. Receiver operating characteristic curve analysis was performed to assess the diagnostic value of plasma exosomal miR-493-5p. EdU, tube formation and Transwell assays were used to investigate the effects of exosomal miR-493-5p on human umbilical vein endothelial cells (HUVECs). A subcutaneous xenograft model was used to evaluate the antitumor effects of miR-493-5p and decitabine (a DNA methyltransferase inhibitor). The relationship between miR-493-5p and SP1/SP3 was revealed via a dual-luciferase reporter assay. A series of rescue assays were subsequently performed to investigate whether SP1/SP3 participate in exosomal miR-493-5p-mediated ESCC angiogenesis. Results: We found that miR-493-5p expression was notably reduced in the plasma exosomes of ESCC patients, which showed the high potential value in early ESCC diagnosis. Additionally, miR-493-5p, as a candidate tumor suppressor, inhibited the proliferation, migration and tube formation of HUVECs by suppressing the expression of VEGFA and exerted its angiostatic effect via exosomes. Moreover, we found that SP1/SP3 are direct targets of miR-493-5p and that re-expression of SP1/SP3 could reverse the inhibitory effects of miR-493-5p. Further investigation revealed that miR-493-5p expression could be regulated by DNA methyltransferase 3A (DNMT3A) and DNMT3B, and either miR-493-5p overexpression or restoration of miR-493-5p expression with decitabine increased the antitumor effects of bevacizumab. Conclusion: Exosomal miR-493-5p is a highly valuable ESCC diagnosis marker and inhibits ESCC-associated angiogenesis. miR-493-5p can be silenced via DNA methylation, and restoration of miR-493-5p expression with decitabine increases the antitumor effects of bevacizumab, suggesting its potential as a therapeutic target for ESCC treatment.


Asunto(s)
Metilación de ADN , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Decitabina/farmacología , Ratones , Ratones Desnudos , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Ratones Endogámicos BALB C , Femenino , Angiogénesis
13.
Artículo en Inglés | MEDLINE | ID: mdl-38953967

RESUMEN

The rise of immunotherapy provided new approaches to cancer treatment. We aimed to describe the contribution of chimeric antigen receptor T cell immunotherapy to future prospects. We analyzed 8035 articles from the Web of Science Core Collection with CiteSpace that covered with various aspects with countries, institutions, authors, co-cited authors, journals, keywords, and references. The USA was the most prolific country, with the University of Pennsylvania being the most published institution. Among individual authors, June Carl H published the most articles, while Maude SL was the most frequently co-cited author. "Blood" emerged as the most cited journal. Keyword clustering revealed six core themes: "Expression," "Chimeric Antigen Receptor," "Tumor Microenvironment," "Blinatumomab," "Multiple Myeloma," and "Cytokine Release Syndrome." In the process of researching the timeline chart of keywords and references, "Large B-cell lymphoma" was located on the right side of the timeline. In the keyword prominence analysis, we found that the keywords "biomarkers," "pd-1," "antibody drug conjugate," "BCMA," and "chimeric antigen" had high explosive intensity in the recent past. We found that in terms of related diseases, "large B-cell lymphoma" and "cytokine release syndrome" are still difficult problems in the future. In the study of therapeutic methods, "BCMA," "PD-1," "chimeric antigen," and "antibody drug conjugate" deserve more attention from researchers in the future.

14.
AIMS Neurosci ; 11(2): 188-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988887

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a predominant neurotrophic factor in the brain, indispensable for neuronal growth, synaptic development, neuronal repair, and hippocampal neuroplasticity. Among its genetic variants, the BDNF Val66Met polymorphism is widespread in the population and has been associated with the onset and aggravation of diverse pathologies, including metabolic conditions like obesity and diabetes, cardiovascular ailments, cancer, and an array of psychiatric disorders. Psychiatric disorders constitute a broad category of mental health issues that influence mood, cognition, and behavior. Despite advances in research and treatment, challenges persist that hinder our understanding and effective intervention of these multifaceted conditions. Achieving and maintaining stable body weight is pivotal for overall health and well-being, and the relationship between psychiatric conditions and body weight is notably intricate and reciprocal. Both weight gain and loss have been linked to varying mental health challenges, making the disentanglement of this relationship critical for crafting holistic treatment strategies. The BDNF Val66Met polymorphism's connection to weight fluctuation in psychiatric patients has garnered attention. This review investigated the effects and underlying mechanisms by which the BDNF Val66Met polymorphism moderates body weight among individuals with psychiatric disorders. It posits the polymorphism as a potential biomarker, offering prospects for improved monitoring and therapeutic approaches for mental illnesses.

15.
Adv Sci (Weinh) ; : e2400445, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984458

RESUMEN

Global water scarcity and extreme weather intensify drought stress, significantly reducing cotton yield and quality worldwide. Drought treatments are conducted using a population of chromosome segment substitution lines generated from E22 (G. hirsutum) and 3-79 (G. barbadense) as parental lines either show superior yields or fiber quality under both control and drought conditions. Fourteen datasets, covering 4 yields and 4 quality traits, are compiled and assessed for drought resistance using the drought resistance coefficient (DRC) and membership function value of drought resistance (MFVD). Genome-wide association studies, linkage analysis, and bulked segregant analysis are combined to analyze the DR-related QTL. A total of 121 significant QTL are identified by DRC and MFVD of the 8 traits. CRISPR/Cas9 and virus-induced gene silencing techniques verified DRR1 and DRT1 as pivotal genes in regulating drought resistant of cotton, with hap3-79 exhibiting greater drought resistance than hapE22 concerning DRR1 and DRT1. Moreover, 14 markers with superior yield and fiber quality are selected for drought treatment. This study offers valuable insights into yield and fiber quality variations between G. hirsutum and G. barbadense amid drought, providing crucial theoretical and technological backing for developing cotton varieties resilient to drought, with high yield and superior fiber quality.

16.
Drug Des Devel Ther ; 18: 2449-2460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915863

RESUMEN

WEE1 kinase is involved in the G2/M cell cycle checkpoint control and DNA damage repair. A functional G2/M checkpoint is crucial for DNA repair in cancer cells with p53 mutations since they lack a functional G1/S checkpoint. Targeted inhibition of WEE1 kinase may cause tumor cell apoptosis, primarily, in the p53-deficient tumor, via bypassing the G2/M checkpoint without properly repairing DNA damage, resulting in genome instability and chromosomal deletion. This review aims to provide a comprehensive overview of the biological role of WEE1 kinase and the potential of WEE1 inhibitor (WEE1i) for treating gynecological malignancies. We conducted a thorough literature search from 2001 to September 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of WEE1i and gynecologic oncology. WEE1i has been shown to inhibit tumor activity and enhance the sensitivity of chemotherapy or radiotherapy in preclinical models, particularly in p53-mutated gynecologic cancer models, although not exclusively. Recently, WEE1i alone or combined with genotoxic agents has confirmed its efficacy and safety in Phase I/II gynecological malignancies clinical trials. Furthermore, it has become increasingly clear that other inhibitors of DNA damage pathways show synthetic lethality with WEE1i, and WEE1 modulates therapeutic immune responses, providing a rationale for the combination of WEE1i and immune checkpoint blockade. In this review, we summarize the biological function of WEE1 kinase, development of WEE1i, and outline the preclinical and clinical data available on the investigation of WEE1i for treating gynecologic malignancies.


Asunto(s)
Antineoplásicos , Proteínas de Ciclo Celular , Neoplasias de los Genitales Femeninos , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Humanos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/enzimología , Femenino , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Daño del ADN/efectos de los fármacos
17.
Biochem Pharmacol ; 226: 116372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885773

RESUMEN

MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.


Asunto(s)
GTP Fosfohidrolasas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Masculino , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/antagonistas & inhibidores , Transducción de Señal/fisiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Ratones , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Apoptosis , Ratones Endogámicos C57BL
18.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893298

RESUMEN

Simple and sensitive determination of total antioxidant capacity (TAC) in food samples is highly desirable. In this work, an electrochemical platform was established based on a silica nanochannel film (SNF)-modified electrode, facilitating fast and highly sensitive analysis of TAC in colored food samples. SNF was grown on low-cost and readily available tin indium oxide (ITO) electrode. Fe3+-phenanthroline complex-Fe(III)(phen)3 was applied as the probe, and underwent chemical reduction to form Fe2+-phenanthroline complex-Fe(II)(phen)3 in the presence of antioxidants. Utilizing an oxidative voltage of +1 V, chronoamperometry was employed to measure the current generated by the electrochemical oxidation of Fe(II)(phen)3, allowing for the assessment of antioxidants. As the negatively charged SNF displayed remarkable enrichment towards positively charged Fe(II)(phen)3, the sensitivity of detection can be significantly improved. When Trolox was employed as the standard antioxidant, the electrochemical sensor demonstrated a linear detection range from 0.01 µM to 1 µM and from 1 µM to 1000 µM, with a limit of detection (LOD) of 3.9 nM. The detection performance is better that that of the conventional colorimetric method with a linear de range from 1 µM to 40 µM. Owing to the anti-interfering ability of nanochannels, direct determination of TAC in colored samples including coffee, tea, and edible oils was realized.


Asunto(s)
Antioxidantes , Técnicas Electroquímicas , Electrodos , Análisis de los Alimentos , Oxidación-Reducción , Antioxidantes/análisis , Antioxidantes/química , Técnicas Electroquímicas/métodos , Análisis de los Alimentos/métodos , Límite de Detección , Fenantrolinas/química , Dióxido de Silicio/química
19.
Front Immunol ; 15: 1402523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863715

RESUMEN

We described a challenging case of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in a young girl. Despite enduring months of reduced consciousness with ongoing antibody presence, she ultimately exhibited remarkable improvement within a 5-year follow-up period. Additionally, we conducted a concise review of relevant literature on anti-NMDAR encephalitis, with a specific focus on anti-NMDAR antibodies. Our findings enhance the clinical comprehension of anti-NMDAR encephalitis and offer valuable insights to clinicians for its management.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Autoanticuerpos , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Femenino , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Receptores de N-Metil-D-Aspartato/inmunología , Niño , Trastornos de la Conciencia/etiología , Trastornos de la Conciencia/inmunología
20.
Phys Rev Lett ; 132(22): 226003, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877959

RESUMEN

The nature of the anomalous metal state has been a major puzzle in condensed matter physics for more than three decades. Here, we report systematic investigation and modulation of the anomalous metal states in high-temperature interface superconductor FeSe films on SrTiO_{3} substrate. Remarkably, under zero magnetic field, the anomalous metal state persists up to 20 K in pristine FeSe films, an exceptionally high temperature standing out from previous observations. In stark contrast, for the FeSe films with nanohole arrays, the characteristic temperature of the anomalous metal state is considerably reduced. We demonstrate that the observed anomalous metal states originate from the quantum tunneling of vortices adjusted by the Ohmic dissipation. Our work offers a perspective for understanding the origin and modulation of the anomalous metal states in two-dimensional bosonic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...