Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Oncoimmunology ; 13(1): 2376264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988824

RESUMEN

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Asunto(s)
Apoptosis , Antígeno B7-H1 , Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Escape del Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Masculino , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Evasión Inmune , Inmunoglobulinas
2.
Heliyon ; 10(12): e32621, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975179

RESUMEN

Background: The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes. Methods: This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes. Results: We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer. Conclusion: Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.

3.
Nanoscale ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979605

RESUMEN

A novel breakthrough has been achieved in gas detection through the innovative application of surface-enhanced Raman scattering (SERS) to hydrogen (H2) detection for the first time. This study capitalizes on the unique SERS effects of gold nanoparticles coupled with the redox interaction between hydrogen and crystal violet, allowing for the development of a magnetic SERS probe that demonstrated enhanced sensitivity and specificity. This new probe can detect hydrogen concentrations as low as 1% by volume in gaseous environments, offering a substantial improvement over the detection limits of traditional hydrogen alarms. Further, this report comprehensively detailed the synthesis of the FA-CV materials, instrumental analysis, and an in-depth evaluation of the SERS performance of the FA-CV substrate, underlining the outstanding sensitivity, stability, and recyclability of the probe. The introduction of SERS in this novel capacity not only contributes a valuable approach to gas sensing technologies, but also suggests promising avenues for the application of SERS in environmental monitoring and energy security. This illustrates the adaptability and potential impact of this powerful technique.

4.
Wideochir Inne Tech Maloinwazyjne ; 19(2): 178-186, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38973793

RESUMEN

Introduction: In patients with pulmonary nodules (PNs), computed tomography (CT)-guided localization is commonly performed prior to the resection of these nodules through video-assisted thoracic surgery (VATS). Aim: To evaluate the relative clinical efficacy of coil and anchored needle (AN) insertion as approaches to preoperative CT-guided PN localization. Material and methods: This single-center, prospective, open-label, randomized controlled trial (registration number: NCT05183945) enrolled consecutive patients from January 2022 to July 2022, assigning these patients at random to undergo either coil or AN localization prior to VATS. Efficacy and safety outcomes in these two groups were then compared. Results: This study enrolled in total 100 patients with 120 PNs who were assigned at random to the coil (patients = 50; PNs = 60) and AN (patients = 50; PNs = 60) localization groups. The respective technical success rates for coil and AN localization were 98.3% (59/60) and 100% (60/60), with no significant difference between the groups (p = 1.000). The coil group had a significantly longer median duration of localization relative to the AN group (16.0 min vs. 8.0 min, p < 0.001). Similar rates of localization-related pneumothorax (8.3% vs. 5.0%, p = 0.715) and pulmonary hemorrhage (5.0% vs. 13.3%, p = 0.110) were observed in both groups. In addition, the VATS resection procedures achieved 100% technical success rates in both of these localization groups. Conclusions: Both coil- and AN-based localization approaches can be successfully employed to localize PNs prior to VATS resection, with the AN localization procedure requiring less time to complete on average as compared to the coil-based approach.

5.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001031

RESUMEN

Moho tomography is important for studying the deep Earth structure and geodynamics, and fiber borehole strainmeters are broadband, low-noise, and attractive tools for seismic observation. Recently, many studies have shown that fiber optic seismic sensors can be used for subsurface structure imaging based on ambient noise cross-correlation, similar to conventional geophones. However, this array-dependent cross-correlation method is not suitable for fiber borehole strainmeters. Here, we developed a Moho imaging scheme for the characteristics of fiber borehole strainmeters based on ambient noise autocorrelation. S-wave reflection signals were extracted from the ambient noise through a series of processing steps, including phase autocorrelation (PAC), phase-weighted stacking (PWS), etc. Subsequently, the time-to-depth conversion crustal thickness beneath the station was calculated. We applied our scheme to continuous four-component recordings from four fiber borehole strainmeters in Lu'an, Anhui Province, China. The obtained Moho depth was consistent with the previous research results. Our work shows that this method is suitable for Moho imaging with fiber borehole strainmeters without relying on the number of stations.

6.
Clin Respir J ; 18(7): e13798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994643

RESUMEN

BACKGROUND: Azvudine (FNC) is a novel small molecule antiviral drug for treating COVID-19 that is available only on the Chinese market. Despite being recommended for treating COVID-19 by the Chinese guidelines, its efficacy and safety are still unclear. This study aimed to evaluate the protective effect of FNC on COVID-19 outcomes and its safety. METHODS: We followed the PRISMA 2020 guidelines and searched the PubMed, Embase, Web of Science, Scopus, and China National Knowledge Infrastructure (CNKI) databases to evaluate studies on the effectiveness of FNC in treating COVID-19 in China, focusing on mortality and overall outcomes. Additionally, its impact on the length of hospital stay (LOHS), time to first nucleic acid negative conversion (T-FNANC), and adverse events was evaluated. The inclusion criterion was that the studies were published from July 2021 to April 10, 2024. This study uses the ROBINS-I tool to assess bias risk and employs the GRADE approach to evaluate the certainty of the evidence. RESULTS: The meta-analysis included 24 retrospective studies involving a total of 11 830 patients. Low-certainty evidence revealed no significant difference in mortality (OR = 0.91, 95% CI: 0.76-1.08) or LOHS (WMD = -0.24, 95% CI: -0.83 to 0.35) between FNC and Paxlovid in COVID-19 patients. Low-certainty evidence shows that the T-FNANC was longer (WMD = 1.95, 95% CI: 0.36-3.53). Compared with the Paxlovid group, low-certainty evidence shows the FNC group exhibited a worse composite outcome (OR = 0.77, 95% CI: 0.63-0.95) and fewer adverse events (OR = 0.63, 95% CI: 0.46-0.85). Compared with supportive treatment, low certainty shows FNC significantly reduced the mortality rate in COVID-19 patients (OR = 0.61, 95% CI: 0.51-0.74) and decreased the composite outcome (OR = 0.67, 95% CI: 0.50-0.91), and very low certainty evidence shows significantly decreased the T-FNANC (WMD = -4.62, 95% CI: -8.08 to -1.15). However, in very low certainty, there was no significant difference in LOHS (WMD = -0.70, 95% CI: -3.32 to 1.91) or adverse events (OR = 1.97, 95% CI: 0.48-8.17). CONCLUSIONS: FNC appears to be a safe and potentially effective treatment for COVID-19 in China, but further research with larger, high-quality studies is necessary to confirm these findings. Due to the certainty of the evidence and the specific context of the studies conducted in China, caution should be exercised when considering whether the results are applicable worldwide. TRIAL REGISTRATION: PROSPERO number: CRD42024520565.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Estudios Observacionales como Asunto , SARS-CoV-2 , Humanos , Antivirales/uso terapéutico , Antivirales/efectos adversos , China/epidemiología , COVID-19/mortalidad , Resultado del Tratamiento
7.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998458

RESUMEN

In this paper, we demonstrate that the absorption frequencies of the bimodal absorber shift with the coupling strength of the bright and dark modes. The coupling between the bright mode and the dark mode can acquire electromagnetically induced transparency, we obtain the analytical relationship between the absorbing frequencies, the resonant frequencies, losses of the bright mode and dark mode, and the coupling strength between two modes by combining the coupled mode theory with the interference theory. As the coupling strength between the bright mode and the dark mode decreases, the two absorption peaks gradually move closer to each other, inversely, they will move away from each other. The simulation employs three distinct metasurface structures with coupling of the bright and dark modes, thereby verifying the generality of the theoretical findings.

8.
Mikrochim Acta ; 191(8): 465, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012354

RESUMEN

A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 µM in solution and 24.316 µM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.


Asunto(s)
Antioxidantes , Colorimetría , Oxidación-Reducción , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Colorimetría/métodos , Catálisis , Molibdeno/química , Límite de Detección , Hierro/química , Bencidinas/química , Teléfono Inteligente , Hidrogeles/química , Transporte de Electrón , Técnicas Biosensibles/métodos , Óxidos/química
9.
Phytopathology ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013390

RESUMEN

Durum wheat (T. turgidum L.) is threatened by the appearance of new virulent races of leaf rust, caused by Puccinia triticina, in recent years. This study was conducted to determine the leaf rust resistance in a modern Canadian durum cultivar Strongfield. Six populations derived from crosses of Strongfield with six tetraploid wheat lines, respectively, were tested at seedling plant stage with different P. triticina races. Two of the populations were evaluated for adult plant leaf rust infection in Canada and Mexico. A stepwise regression joint linkage QTL mapping and analysis by MapQTL were performed. Strongfield contributed the majority of QTL detected, contributing seven QTL detected in field tests, and eight QTL conditioning seedling resistance. A 1B QTL, QLr-Spa-1B.1, from Strongfield had a significant effect in both Canadian and Mexican field tests, and corresponded with Lr46/Yr29. The remaining field QTL were found in only the Canadian or the Mexican environment, not both. The QTL from Strongfield on 3A, QLr-Spa-3A, conferred seedling resistance to all races tested and had a significant effect in the field in Canada. This is the first report of the QLr-Spa-3A and Lr46/Yr29 as key components of the genetic resistance in Canadian durum wheat. KASP markers were developed to detect the QLr-Spa-3A for use in marker assisted leaf rust resistance breeding. The susceptible parental lines contributed QTL on 1A, 2B and 5B that were effective in Mexican field tests that may be good targets to integrate into modern durum varieties to improve resistance to new durum virulent races.

10.
J Control Release ; 371: 516-529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849095

RESUMEN

Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.


Asunto(s)
Administración Cutánea , Técnicas de Transferencia de Gen , Humanos , Animales , Terapia Genética/métodos , Piel/metabolismo , Sistemas de Liberación de Medicamentos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38830270

RESUMEN

Electrocatalytic sulfur reduction reaction (SRR) is emerging as an effective strategy to combat the polysulfide shuttling effect, which remains a critical factor impeding the practical application of the Li-S battery. Single-atom catalyst (SAC), one of the most studied catalytic materials, has shown considerable potential in addressing the polysulfide shuttling effect in a Li-S battery. However, the role played by transition metal vs coordination mode in electrocatalytic SRR is trial-and-error, and the general understanding that guides the synthesis of the specific SAC with desired property remains elusive. Herein, we use first-principles calculations and machine learning to screen a comprehensive data set of graphene-based SACs with different transition metals, heteroatom doping, and coordination modes. The results reveal that the type of transition metal plays the decisive role in SAC for electrocatalytic SRR, rather than the coordination mode. Specifically, the 3d transition metals exhibit admirable electrocatalytic SRR activity for all of the coordination modes. Compared with the reported N3C1 and N4 coordinated graphene-based SACs covering 3d, 4d, and 5d transition metals, the proposed para-MnO2C2 and para-FeN2C2 possess significant advantages on the electrocatalytic SRR, including a considerably low overpotential down to 1 mV and reduced Li2S decomposition energy barrier, both suggesting an accelerated conversion process among the polysulfides. This study may clarify some understanding of the role played by transition metal vs coordination mode for SAC materials with specific structure and desired catalytic properties toward electrocatalytic SRR and beyond.

12.
Arthrosc Tech ; 13(5): 102966, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835442

RESUMEN

As an important structure for maintaining the hoop tension of the medial meniscus of the knee joint, the posterior root is receiving increasing attention. Medial meniscus posterior root tear is an important reason for the occurrence, development, and kinematics changes of knee osteoarthritis. It is necessary to repair the posterior root of meniscus for restoring joint kinematics and improving clinical efficacy. This Technical Note reports a medial meniscus posterior root tear repair technique using arthroscopic transtibial pullout repair (ATPR) combined with tibial condylar valgus osteotomy. The aim of this technique is to repair the posterior root of the medial meniscus while correcting the force line through osteotomy, opening the joint gap, improving the joint surface fit, providing a good mechanical environment for meniscus repair, thereby improving the healing rate of the posterior root of the meniscus and reducing the risk of retear. Although clinical evidence is currently limited, we believe that this technology may have more clinical advantages compared with ATPR alone or ATPR combined with high tibial osteotomy.

13.
Carbohydr Polym ; 340: 122285, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858002

RESUMEN

Although many preparation methods have been reported so far, it is still a great challenge for intelligent packaging films with both excellent mechanical properties and very high sensitivity. Herein, we report a facile method to prepare performance-enhanced pectin (PC)/carboxymethyl cellulose sodium (CMC)/anthocyanins (ACNs)/metal ion films by crosslinking with metal ions (Zn2+, Mg2+ and Ca2+). Cross-linking reaction between PC/CMC and metal ions significantly improved water resistance and mechanical properties of composite films (P < 0.05). Even at high relative humidity (RH = 84 %), cross-linking of Ca2+, Mg2+, and Zn2+ significantly increased the tensile index of the films by 1.37, 1.41, and 1.52 times (P < 0.05), respectively. Moreover, the complexation of metal ions/polysaccharides with ACNs reduced the decomposition rate of ACNs, improved the storage stability and antioxidant capacity of ACNs, and also increased the sensitivity of the colorimetric response of the indicator films in monitoring shrimp freshness. Thus, with this high sensitivity, the Red, Green and Blue (RGB) values of the films can be determined using a mobile phone application to monitor shrimp safety in real time. These results suggest that ACNs-metal cation-polysaccharide composite films have great potential for smart packaging applications.

14.
Intervirology ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934174

RESUMEN

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to three months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to three months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV DNA (ß=-0.43, 95% Confidence Interval [CI]: -0.76 to -0.12, p=0.009), HBeAg (ß=-195.15, 95% CI: -366.35 to -23.96, p=0.027), and hemoglobin changes (ß=-8.09, 95%CI: -15.54 to -0.64, p=0.035) and positively to changes in the levels of alanine aminotransferase (ß=73.9, 95%CI:38.92-108.95, p<0.001) and albumin (ß=2.73, 95% CI:0.23-5.23, p=0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intra-familial HBV infection have less hepatitis flares and liver damage, but their HBV DNA and HBeAg levels rebound faster after delivery, than those without intra-familial infection by the virus.

15.
Angew Chem Int Ed Engl ; : e202403541, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885002

RESUMEN

The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.

16.
BMC Genomics ; 25(1): 606, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886664

RESUMEN

BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.


Asunto(s)
Polimorfismo de Nucleótido Simple , Lana , Animales , Ovinos/genética , Selección Genética , Pigmentación/genética , Estudio de Asociación del Genoma Completo
17.
Cell Metab ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38851189

RESUMEN

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.

18.
BMC Genomics ; 25(1): 641, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937677

RESUMEN

BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.


Asunto(s)
Peso Corporal , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lana , Animales , Peso Corporal/genética , Lana/crecimiento & desarrollo , Ovinos/genética , Ligamiento Genético , Marcadores Genéticos , Secuenciación Completa del Genoma , Fenotipo , Oveja Doméstica/genética , Genotipo
19.
J Am Chem Soc ; 146(27): 18535-18543, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940387

RESUMEN

The rapidly evolving field of inorganic solid-state electrolytes (ISSEs) has been driven in recent years by advances in data-mining techniques, which facilitates the high-throughput computational screening for candidate materials in the databases. The key to the mining process is the selection of critical features that underline the similarity of a material to an existing ISSE. Unfortunately, this selection is generally subjective and frequently under debate. Here we propose a subgraph isomorphism matching method that allows an objective evaluation of the similarity between two compounds according to the topology of the local atomic environment. The matching algorithm has been applied to discover four structure types that are highly analogous to the LiTi2(PO4)3 NASICON prototype. We demonstrate that the local atomic environments similar to LiTi2(PO4)3 endow these four structures with favorable Li diffusion tunnels and ionic conductivity on par with those of the prototype. By further taking into account the electronic structure and electrochemical stability window, 13 compounds are identified to be potential ISSEs. Our findings not only offer a promising approach toward rapid mining of fast ion conductors without limitation in the compositional range but also reveal insights into the design of ISSEs according to the topology of their framework structures.

20.
Front Plant Sci ; 15: 1393621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903439

RESUMEN

Seed quality traits of oilseed rape, Brassica napus (B. napus), exhibit quantitative inheritance determined by its genetic makeup and the environment via the mediation of a complex genetic architecture of hundreds to thousands of genes. Thus, instead of single gene analysis, network-based systems genomics and genetics approaches that combine genotype, phenotype, and molecular phenotypes offer a promising alternative to uncover this complex genetic architecture. In the current study, systems genetics approaches were used to explore the genetic regulation of lignin traits in B. napus seeds. Four QTL (qLignin_A09_1, qLignin_A09_2, qLignin_A09_3, and qLignin_C08) distributed on two chromosomes were identified for lignin content. The qLignin_A09_2 and qLignin_C08 loci were homologous QTL from the A and C subgenomes, respectively. Genome-wide gene regulatory network analysis identified eighty-three subnetworks (or modules); and three modules with 910 genes in total, were associated with lignin content, which was confirmed by network QTL analysis. eQTL (expression quantitative trait loci) analysis revealed four cis-eQTL genes including lignin and flavonoid pathway genes, cinnamoyl-CoA-reductase (CCR1), and TRANSPARENT TESTA genes TT4, TT6, TT8, as causal genes. The findings validated the power of systems genetics to identify causal regulatory networks and genes underlying complex traits. Moreover, this information may enable the research community to explore new breeding strategies, such as network selection or gene engineering, to rewire networks to develop climate resilience crops with better seed quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...