Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745242

RESUMEN

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Asunto(s)
Aeromonas hydrophila , Bacteriófagos , Culex , Resistencia a los Insecticidas , Nitrilos , Piretrinas , Animales , Aeromonas hydrophila/virología , Aeromonas hydrophila/efectos de los fármacos , Culex/virología , Culex/microbiología , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Piretrinas/farmacología , Nitrilos/farmacología , Insecticidas/farmacología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Femenino
2.
Mar Pollut Bull ; 200: 116072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290363

RESUMEN

This study represents the first comprehensive investigation of 16 polycyclic aromatic hydrocarbons (PAHs) in the waters and sediments of Lake Ulansuhai. It explores their occurrence, sources, transport behavior, and associated risks to human health and ecosystems. The results revealed that concentrations of ∑PAHs in dissolved phase and sediment with no significant seasonal differences. In contrast, ∑PAHs concentrations in suspended particulate matter were significantly higher during the ice-free period compared to the ice period. Spatially, the northern part of Lake Ulansuhai displayed higher PAHs content. Diagnostic isomeric ratios and PMF models indicated that the PAHs were primarily derived from combustion sources. The distribution of PAHs within water-sediment demonstrated that non-equilibrium status. Fugacity calculations indicated that 2-4 rings PAHs acted as secondary sources of sediment emissions. Toxicity assessment, indicated that PAHs posed no significant carcinogenic risk to humans. Risk quotient values showed that PAHs as low to high ecological risk.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Lagos , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , China , Medición de Riesgo
3.
Pest Manag Sci ; 80(4): 1991-2000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092527

RESUMEN

BACKGROUND: Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS: Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS: Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.


Asunto(s)
Culex , Insecticidas , Piretrinas , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Factor B del Complemento/metabolismo , Resistencia a los Insecticidas/genética , Piretrinas/farmacología , Piretrinas/metabolismo , Nitrilos/farmacología , Nitrilos/metabolismo , Culex/genética , Culex/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Angew Chem Int Ed Engl ; 62(52): e202312151, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909102

RESUMEN

The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic-inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.

5.
ACS Appl Bio Mater ; 6(11): 4775-4790, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37830366

RESUMEN

Cancer starvation/photothermal combined tumor therapy (CST/PTT) has attracted great interest attributed to their mutual compensation and synergistically enhanced effect. However, the very low O2 supply in the tumor microenvironment (TME) greatly limits the CST efficiency of glucose oxidase (GOx). Additionally, the easy degradation in blood circulation and significant off-target effects are big challenges for clinical applications of the GOx-based CST. In this study, a drug delivery system (DDS) with specific tumor-targeted GOx delivery, near-infrared (NIR) light and TME responsive O2 generation, NIR-responsive glucose consumption, high GOx loading, and efficient NIR photothermia was developed. Positively charged AuNRs@MnO2@SiO2 nanoparticles (named AMS+ NPs) were synthesized. GOx was covalently loaded with a high loading ratio of 36.0%. Finally, a thermosensitive biomimetic hybrid membrane composed of a thermosensitive lipid (TSL) membrane, red blood cell membrane (RBCM), and 4T1 cancer cell membrane (CCM) was coated on the NPs through a double-layer strategy. The AMS+-G@TSL@[RBC-CC-TSL]M NPs consumed 32.7 times glucose at 50 °C as that at 37 °C and generated 4.9 times O2 upon NIR laser irradiation. The thermosensitive biomimetic NPs showed an efficient targeting capability to the homotypic 4T1 cancer cells/tumors accompanied by good biocompatibility, macrophage evading capability, high cancer cell cytotoxicity, and excellent antitumor efficacy. The tumor growth inhibition ratio with NIR laser irradiation reached 92.8%. The AMS+-GOx@TSL@[RBC-CC-TSL]M NPs provide a smart, efficient, safe, PTT/CST combined DDS for highly efficient tumor therapy.


Asunto(s)
Biomimética , Neoplasias , Humanos , Compuestos de Manganeso , Óxidos , Dióxido de Silicio , Glucosa , Glucosa Oxidasa , Microambiente Tumoral
6.
Nanomaterials (Basel) ; 13(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570576

RESUMEN

Zero-dimensional (0D) tin halide perovskites feature extraordinary properties, such as broadband emission, high photoluminescence quantum yield, and self-absorption-free characteristics. The innovation of synthesis approaches for high-quality 0D tin halide perovskites has facilitated the flourishing development of perovskite-based optoelectronic devices in recent years. However, discovering an effective strategy to further enhance their emission efficiency remains a considerable challenge. Herein, we report a unique strategy employing rapid heat treatment to attain efficient self-trapped exciton (STE) emission in Cs4SnBr6 zero-dimensional perovskite. Compared to the pristine Cs4SnBr6, rapid thermal treatment (RTT) at 200 °C for a duration of 120 s results in an augmented STE emission with the photoluminescence (PL) quantum yield rising from an initial 50.1% to a substantial 64.7%. Temperature-dependent PL spectra analysis, Raman spectra, and PL decay traces reveal that the PL improvement is attributed to the appropriate electron-phonon coupling as well as the increased binding energies of STEs induced by the RTT. Our findings open up a new avenue for efficient luminescent 0D tin-halide perovskites toward the development of efficient optoelectronic devices based on 0D perovskites.

7.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049319

RESUMEN

The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.

8.
Plants (Basel) ; 12(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050142

RESUMEN

Sustainable control of mosquitoes, vectors of many pathogens and parasites, is a critical challenge. Chemical insecticides are gradually losing their effectiveness because of development of resistance, and plant metabolites are increasingly being recognized as potential alternatives to chemical insecticides. This study aimed to analyze the main components of Perilla frutescens essential oil (PE-EO), investigate the specific activity of PE-EO as a botanical insecticide and mosquito repellent, and explore whether its main constituents are potential candidates for further research. The larvicidal activity assay showed that LC50 of PE-EO and 2-hexanoylfuran was 45 and 25 mg/L, respectively. In the ovicidal activity assay, both 120 mg/L PE-EO and 80 mg/L 2-hexanoylfuran could achieve 98% egg mortality. Moreover, PE-EO and 2-hexanoylfuran showed repellency and oviposition deterrence effects. Notably, 10% PE-EO maintained a high rate of protection for 360 min. Although PE-EO and its main component had certain toxic effects on zebrafish, no significant harmful effects were detected in human embryonic kidney cells. Therefore, perilla essential oil is an effective agent for mosquito control at several life stages and that its main component, 2-hexanoylfuran, is a potential candidate for developing novel plant biopesticides.

9.
Ann Hematol ; 102(5): 1011-1017, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36947214

RESUMEN

Because of lacking of head-to-head comparison among polatuzumab (Pola) vedotin and other novel agents for untreated diffuse large B-cell lymphoma (DLBCL), the optimal option remains undefined. We searched twelve relevant published reports, covering 8376 subjects. Interestingly, the PFS benefit with Pola-R-CHP over other regimens was found prominently in those B-cell-like type (ABC-type) patients. For those ABC-type patients, the PFS advantage with Pola-R-CHP was statistically significant, when compared to R-CHOP+Bort (HR: 0.52, P=0.02), R-CHOP+Ibru (HR: 0.43, P=0.001), R-CHOP+Lena (HR: 0.51, P=0.009), G-CHOP (HR: 0.46, P=0.008), and R-CHOP (HR: 0.40, P<0.001). Meanwhile, for those germinal center B-cell-like (GCB) type patients, no PFS advantage with Pola-R-CHP was found when compared to R-CHOP+Bort (HR: 1.18, P=0.46), R-CHOP+Lena (HR: 1.21, P=0.45), G-CHOP (HR: 1.39, P=0.14), R-CHOP-14 (HR: 0.94, P=0.82), and R-CHOP (HR: 1.00, P=1). The PFS advantage with Pola-R-CHP over other regimens might be confined to those patients of ABC-type DLBCL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso , Humanos , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ciclofosfamida/efectos adversos , Doxorrubicina/efectos adversos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Metaanálisis en Red , Prednisona/efectos adversos , Rituximab/uso terapéutico , Vincristina/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202457

RESUMEN

Multi-band emission luminescence materials are of great significance owing to their extensive application in diverse fields. In this research, we successfully prepared a series of Pr3+-doped Ca3Al2O6 multi-band emission phosphors via a high-temperature solid-state method. The phase structure, morphology, luminescence spectra and decay curves were investigated in detail. The Ca3Al2O6:Pr3+ phosphors can absorb blue lights and emit lights in the 450-750 nm region, and typical emission bands are located at 488 nm (blue), 525-550 nm (green), 611-614 nm (red), 648 nm (red) and 733 nm (deep red). The influence of the Pr3+ doping concentration was discussed, and the optimal Pr3+ doping concentration was determined. The impacts of charge compensator ions (Li+, Na+, and K+) on the luminescence of Pr3+ were also investigated, and it was found that all the charge compensator ions contributed positively to the emission intensity. More importantly, the emission intensity of the as-prepared phosphors at 423 K can still maintain 65-70% of that at room temperature, and the potential application for pc-LED was investigated. The interesting results indicate that the prepared phosphors may serve multifunctional and advanced applications.

11.
Front Neurosci ; 17: 1332329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292895

RESUMEN

Objective: This study aimed to systematically review zuranolone's efficacy and safety in treating major depressive disorder (MDD). Methods: We conducted electronic searches in databases like PubMed, Embase, Cochrane, and Web of Science to identify randomized controlled trials using zuranolone for severe depression from study inception to September 15, 2023. Two independent reviewers screened studies, extracted data, and assessed study quality. Our meta-analysis included four studies with 1,454 patients. The findings showed significant improvements with zuranolone across various measures: Hamilton Depression Rating Scale (HAM-D) scores indicated notable alleviation in depressive symptoms (WMD: -2.03; 95% CI: -2.42 to -1.65); the treatment group's HAM-D score response rate was significantly higher than the control group's at day 15 (OR: 1.46, 95% CI: 1.11 to 1.92, P = 0.01). The meta-analysis also revealed higher remission rates for the treatment group compared to the control group at day 15 (OR: 1.68, 95% CI: 1.18 to 2.39, P = 0.03). Additionally, HAM-A scores on day 15 and MADRS scores on day 15 showed improvement, and HAM-D scores for 30 mg zuranolone on different treatment days exhibited improvement (WMD, -2.55; 95% CI, -3.24 to -1.58; P = 0.05). However, analyzing HAM-D scores on day 15 for various zuranolone doses revealed no significant differences. Importantly, zuranolone use was associated with an increased incidence of adverse reactions. Results: Our meta-analysis included four studies with 1454 patients, showing significant improvements with zuranolone across various measures, including HAM-D scores, HAM-A scores, MADRS scores, and specific HAM-D scores for 30 mg zuranolone on different treatment days. However, no significant differences were found in HAM-D scores on day 15 for various doses of zuranolone. Conclusions: Our findings suggest that zuranolone is a promising, simple, and convenient treatment for patients with major depressive disorder, offering potential guidance for clinical practice.

12.
ACS Appl Bio Mater ; 5(11): 5113-5125, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270019

RESUMEN

As an appealing biomimetic strategy for various medical applications, cell membrane coating lacks sensitive on-demand breaking capability. Herein, we incorporated thermosensitive lipid (TSL) membrane into red blood cell (RBC) and MCF-7 cancer cell (MC) hybrid membrane ([RBC-MC]M) vesicles. The [RBC-MC-TSL]M was coated onto doxorubicin (Dox)-loaded hollow gold nanoparticles to enhance chemo-/photothermal combined tumor therapy at a mild hyperthermia temperature (≤49 °C). Double-layer coating with TSL and [RBC-MC-TSL]M as the inner and outer layer, respectively, presented better antileakage and higher NIR-responsivity than single-layer coating. The Dox release ratio upon NIR laser irradiation (≤49 °C) was 74.6%, much higher than that (33.5%) without NIR laser. The nanodrug can be efficiently and specifically taken up by MCF-7 cells. In addition, the nanodrug exhibited excellent tumor-targeting property, with 4.08- and 1.12-times Dox accumulation in MCF-7 tumors compared to free Dox and [RBC-MC]M-coated counterpart, respectively. Most importantly, TSL incorporation significantly enhanced NIR-responsive antitumor efficiency, with tumor growth inhibition ratio increased from 35.1% to 48.6% after a single dose administration. Besides, the nanodrug exhibited very good biocompatibility. Camouflaging nanoparticles with the thermosensitive biomimetic hybrid membrane provides a painless and promisingly clinical-applicable approach for effective chemo-/photothermal combined mild-hyperthermia tumor therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Oro/farmacología , Biomimética , Nanopartículas del Metal/uso terapéutico , Doxorrubicina/farmacología
13.
Anal Methods ; 14(37): 3686-3693, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36073318

RESUMEN

We constructed a self-powered and reagent-less electrochemical aptamer sensor for sensitive detection of aflatoxin B1 (AFB1). Here, the metal ion Mn2+ required for the DNAzyme to drive a DNA walker is wrapped in UIO-66(Zr)-(COOH)2 and AFB1 triggers the DNAzyme walking strands to automatically and continuously cut the tetraferrocene-labeled substrate strands, which results in a significant decrease in the electrochemical signal. Under the optimal conditions, the concentration dependence of AFB1 is linear in the concentration range of 0.1 pg mL-1 to 0.195 µg mL-1, and the limit of detection is as low as 4.8 fg mL-1. The sensor displayed good performance even for samples with a complex matrix, such as a peanut sample. The recoveries of AFB1 obtained ranged from 95.5 to 106.8%. The developed sensing platform is reagent-less, self-powered, and highly sensitive. It holds great potential for detection of AFB1 in environmental and food samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Aflatoxina B1/análisis , Técnicas Biosensibles/métodos , Indicadores y Reactivos , Límite de Detección , Estructuras Metalorgánicas , Ácidos Ftálicos
14.
ACS Appl Mater Interfaces ; 14(24): 28230-28238, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687348

RESUMEN

The discovery of X-ray-charged persistent luminescence (PersL) in fluoride nanoparticles enables these materials to emit photons without real-time excitation, which provides a great possibility for the development of new luminescent nanotechnologies. In this work, we developed NaLuF4:Mn nanoparticles with intense green PersL and functionalized surfaces and accordingly achieved time-gated imaging of latent fingerprints (LFPs) with Level 3 details. These surface-modified NaLuF4:Mn nanoparticles exhibited near-spherical morphology, long-lasting emission for several hours, appropriate trap depth distribution, and tight chemical bonding with amino acids from fingerprints, thus greatly improving the accuracy of LFP imaging in a variety of environments. The developed NaLuF4:Mn PersL nanoparticles are expected to find broad applications in the fields of LFP imaging and in vivo biological imaging.


Asunto(s)
Luminiscencia , Nanopartículas , Fluoruros , Fotones
15.
Biotechnol Appl Biochem ; 69(3): 1036-1046, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33891320

RESUMEN

The development of convenient and efficient strategies without using complex nanomaterials or enzymes for signal amplification is very important for bioanalytical applications. Herein, a novel electrochemical DNA sensor was developed by harnessing the signal amplification efficiency of catalytic hairpin assembly (CHA) and a brand-new signal marker tetraferrocene. The prepared sensor had both ends of the probe H2 labeled with tetraferrocene; both ends have a large number of unhybridized T bases, which cause tetraferrocene to move closer to the electrode surface, generating a high-efficiency amplification signal. In the presence of target DNA, it induced strand exchange reactions promoting the formation of double-stranded DNA and recycling of target DNA. Under optimal conditions, the sensor showed a good linear correlation between the peak currents and logarithm of target DNA concentrations (ranging from 0.1 fM to 0.3125 pM) with a detection limit of 0.06 fM, which is obtained by a triple signal-to-noise ratio. Additionally, the prepared sensor possesses excellent selectivity, reproducibility, and stability, demonstrating efficient and stable DNA detection methodology.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , ADN/genética , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Reproducibilidad de los Resultados
17.
Light Sci Appl ; 10(1): 132, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162833

RESUMEN

NaYF4:Ln3+, due to its outstanding upconversion characteristics, has become one of the most important luminescent nanomaterials in biological imaging, optical information storage, and anticounterfeiting applications. However, the large specific surface area of NaYF4:Ln3+ nanoparticles generally leads to serious nonradiative transitions, which may greatly hinder the discovery of new optical functionality with promising applications. In this paper, we report that monodispersed nanoscale NaYF4:Ln3+, unexpectedly, can also be an excellent persistent luminescent (PersL) material. The NaYF4:Ln3+ nanoparticles with surface-passivated core-shell structures exhibit intense X-ray-charged PersL and narrow-band emissions tunable from 480 to 1060 nm. A mechanism for PersL in NaYF4:Ln3+ is proposed by means of thermoluminescence measurements and host-referred binding energy (HRBE) scheme, which suggests that some lanthanide ions (such as Tb) may also act as effective electron traps to achieve intense PersL. The uniform and spherical NaYF4:Ln3+ nanoparticles are dispersible in solvents, thus enabling many applications that are not accessible for traditional PersL phosphors. A new 3-dimensional (2 dimensions of planar space and 1 dimension of wavelength) optical information-storage application is demonstrated by inkjet-printing multicolor PersL nanoparticles. The multicolor persistent luminescence, as an emerging and promising emissive mode in NaYF4:Ln3+, will provide great opportunities for nanomaterials to be applied to a wider range of fields.

18.
Micromachines (Basel) ; 12(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806198

RESUMEN

Luminescent amorphous silicon nitride-containing dense Si nanodots were prepared by using very-high-frequency plasma-enhanced chemical vapor deposition at 250 °C. The influence of thermal annealing on photoluminescence (PL) was studied. Compared with the pristine film, thermal annealing at 1000 °C gave rise to a significant enhancement by more than twofold in terms of PL intensity. The PL featured a nanosecond recombination dynamic. The PL peak position was independent of the excitation wavelength and measured temperatures. By combining the Raman spectra and infrared absorption spectra analyses, the enhanced PL was suggested to be from the increased density of radiative centers related to the Si dangling bonds (K0) and N4+ or N20 as a result of bonding configuration reconstruction.

19.
Small ; 16(35): e2003121, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32761759

RESUMEN

Materials exhibiting persistent luminescence (PersL) have great prospect in optoelectronic and biomedical applications such as optical information storage, bio-imaging, and so on. Unfortunately, PersL materials with multimode emission properties have been rarely reported, although they are expected to be very desirable in multilevel anti-counterfeiting and encryption applications. Herein, Cr3+ -doped zinc aluminum germanium (ZAG:Cr) nanoparticles exhibiting triple-mode emissions are designed and demonstrated. Upon exposure to steady 254 nm UV light, the ZAG:Cr nanoparticles yield steady bluish-white emission. After turning off the UV light, the emission disappears quickly and the mode switches to transient near-infrared (NIR) PersL emission at predominantly 690 nm. The transient NIR PersL emission which arises from Cr3+ is induced by non-equivalent substitution of Ge4+ . After persisting for 50 min, it can be retriggered by 980 nm photons due to the continuous trap depth distribution of ZAG:Cr between 0.65 and 1.07 eV. Inspired by the triple-mode emissions from ZAG:Cr, multifunctional luminescent inks composed of ZAG:Cr nanoparticles are prepared, and high-security labeling and encoding encryption properties are demonstrated. The results indicate that ZAG:Cr nanoparticles have great potential in anti-counterfeiting and encryption applications, and the strategy and concept described here provide insights into the design of advanced anti-counterfeiting materials.

20.
Micromachines (Basel) ; 10(10)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569619

RESUMEN

The effect of nitrogen doping on the photoluminescence (PL) of amorphous SiCxOy films was investigated. An increase in the content of nitrogen in the films from 1.07% to 25.6% resulted in red, orange-yellow, white, and blue switching PL. Luminescence decay measurements showed an ultrafast decay dynamic with a lifetime of ~1 ns for all the nitrogen-doped SiCxOy films. Nitrogen doping could also widen the bandgap of SiCxOy films. The microstructure and the elemental compositions of the films were studied by obtaining their Raman spectra and their X-ray photoelectron spectroscopy, respectively. The PL characteristics combined with an analysis of the chemical bonds configurations present in the films suggested that the switching PL was attributed to the change in defect luminescent centers resulting from the chemical bond reconstruction as a function of nitrogen doping. Nitrogen doping provides an alternative route for designing and fabricating tunable and efficient SiCxOy-based luminescent films for the development of Si-based optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA