RESUMEN
Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.
Asunto(s)
Cobre , Oxidación-Reducción , Peróxidos , Fenol , Catálisis , Cobre/química , Peróxidos/química , Fenol/química , Óxido de Aluminio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodosRESUMEN
The adsorption of methanethiol (MT), thiophene (T), benzothiophene (BT), dibenzothiophene (DBT) on hexagonal boron nitride (h-BN) has been investigated by the framework of the density functional theory (DFT) calculations in this work. The prefer adsorption sites and interfacial angles of different sulfur compounds on the surface of the h-BN are investigated and analyzed. The adsorption energy results indicated that the adsorption of MT (Ead ≈ -6 kcal mol-1), T (Ead ≈ -10 kcal mol-1), BT (Ead ≈ -15 kcal mol-1), and DBT (Ead ≈ -21 kcal mol-1) on monolayer h-BN is physical interaction, and the value of Ead on bilayer h-BN is more than that on monolayer h-BN 0.05%. Adsorptive conformations show that sulfides prefer to be adsorbed on center B atoms rather than N atoms. Meanwhile, thiophene and its analogues tend to be adsorbed parallel on h-BN plane. Energy decomposition, natural population analysis (NPA), and electrostatic potential (ESP) analysis used to better understand the nature of adsorption on h-BN. van der Waals force plays a dominant role in adsorption process. Due to the π-π interactions, T, BT, and DBT have larger van der Waals forces than MT and the value of adsorption energy is negative correlated to the number of benzene rings. These findings are helpful for deeper understanding the adsorptive desulfurization mechanism and help develop better adsorbents for desulfurization in the future.
RESUMEN
Metal organic framework (MOF)-supported Fe catalysts belong to an important class of catalysts used for the advanced oxidation of organic pollutants in water. The successful preparation of the Fe/MIL-100(Cr) and Fe/MIL-101(Cr) catalysts in this work reinforced that a recently established carrier-gas free vapor deposition method can be a general one for preparing Fe/MOF catalysts. The Fe loading was in the range of 7.8-27.2 wt % on Fe/MIL-101(Cr) at a deposition temperature of 110-150 °C, and it was only 4.35 wt % on Fe/MIL-100(Cr) at 110 °C in comparison. The results obtained from the characterization using the N2-isotherm and EDX mapping showed that the Fe components resided uniformly within the pore of the MOF supports. Both of Fe/MIL-100(Cr) and Fe/MIL-101(Cr) were rather effective for the catalytic removal of aniline from water with Fenton oxidation. Fe/MIL-100(Cr) can effectively remove the total organic carbon (TOC) of the aniline solutions, while Fe/MIL-101(Cr) had a lower TOC removal efficiency. Both of the Fe/MIL-100(Cr) and Fe/MIL-101(Cr) catalysts showed good stability in the crystalline form compared to the previously prepared Fe/UiO-66 catalyst, implicating that they can be potentially more useful than Fe/UiO-66 for treating organic pollutants in water.
RESUMEN
Catalytic Fenton oxidation is an effective way to remove organic pollutants in water, and the performance of the catalyst is a key issue for the competiveness of this method. In this work, various supported bimetallic Pt-Cu catalysts were prepared by different impregnation methods and their performances for catalytic Fenton oxidation of aniline in water were investigated. In the different impregnation methods employed, factors including the reduction method of the metal precursor, type of catalytic support, and loading of metal were investigated. The effect of different reduction methods on actual loadings of the active components on the supported Pt-Cu catalysts showed the order of (i) H2 reduction > (ii) liquid phase methanal reduction. Meanwhile, compared with the monometallic catalysts, the Pt-Cu alloy phase (mainly in the form of PtCu3) was generated and the specific surface area was significantly reduced for the bimetallic catalysts. In the process of Fenton catalytic oxidation of aniline, it was found that most of the prepared catalysts had a certain catalytic activity for H2O2 accompanied with aniline degradation. It was found that Pt0.5Cu1.5/AC (where AC denotes activated carbon) exhibited superb catalytic activity compared with all other prepared catalysts. In particular, aniline was almost completely mineralized in a neutral solution (500 mg L-1 aniline, 0.098 mol L-1 H2O2) after 60 min at 50 °C using Pt-Cu/AC (Pt: 0.5%, Cu: 1.5%). The characterization results showed that the Pt and Cu components were rather evenly distributed on the AC support for this catalyst. More importantly, there was an obvious synergic effect on the supported bimetallic catalyst between the Pt and Cu components for the catalytic oxidation of aniline.