Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400757, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363706

RESUMEN

Intermolecular interactions and adsorbate coverage on a metal electrode's surface/interface play an important role in CO2 reduction reaction (CO2RR). Herein, the activity and selectivity of CO2RR on bimetallic electrode, where a full monoatomic Cu layer covers on Ag surface (CuML/Ag) are investigated by using density functional theory calculations. The surface geometric and electronic structure results indicate that there is high electrocatalytic activity for CO2RR on the CuML/Ag electrode. Specifically, the CuML/Ag surface can accelerate the H2O and CO2 adsorption and hydrogenation while lowering the reaction energy of the rate-determining step. The structure parameters of chemisorbed CO2 with and without H2O demonstrate that activated H2O not only promotes the C-O dissociation but also provides the protons required for CO2RR on the CuML/Ag electrode surface. Furthermore, the various reaction mechanism diagrams indicate that the CuML/Ag electrode has high selectivity for CO2RR, and the efficiency of products can be regulated by modulating the reaction's electric potential.

2.
Small ; 20(43): e2403285, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031789

RESUMEN

Exploration of molecular catalysts with the atomic-level tunability of molecular structures offers promising avenues for developing high-performance catalysts for the electrochemical co-reduction reaction of carbon dioxide (CO2) and nitrite (NO2 -) into value-added urea. In this work, a binuclear cobalt phthalocyanine (biCoPc) catalyst is prepared through chemical synthesis and applied as a C─N coupling catalyst toward urea. Achieving a remarkable Faradaic efficiency of 47.4% for urea production at -0.5 V versus reversible hydrogen electrode (RHE), this biCoPc outperforms many known molecular catalysts in this specific application. Its unique planar macromolecular structure and the increased valence state of cobalt promote the adsorption of nitrogenous and carbonaceous species, a critical factor in facilitating the multi-electron C─N coupling. Combining highly sensitive in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) with density functional theory (DFT) calculations, the linear adsorbed CO (COL) and bridge adsorbed CO (COB) is captured on biCoPc catalyst during the co-reduction reaction. COB, a pivotal intermediate in the co-reduction from CO2 and nitrite to urea, is evidenced to be labile and may be attacked by nitrite, promoting urea production. This work demonstrates the importance of designing molecular catalysts for efficient co-reduction of CO2 and nitrite to urea.

3.
J Phys Chem Lett ; 15(25): 6668-6675, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38899781

RESUMEN

The interfacial adsorption structure of an organic leveler decides its functionality in Cu interconnect electroplating and is yet far from clear. In this work, in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and electrochemical quartz crystal microbalance (EQCM) in conjunction with density functional theory (DFT) calculations are applied to unravel the interfacial adsorption of the classic dye leveler Janus Green B (JGB) at a Cu electrode and understand its polarization property against Cu electrodeposition from an adsorption structure perspective. ATR-SEIRAS measurements and DFT calculations reveal that the N=N bond of the JGB molecule splits via reductive hydrogenation, forming two fragments of contrasting adsorption configurations. JGB exhibits the strongest inhibition effect on Cu deposition among all the tested additives including individual and mixed fragments, due to the highest coverage of organic adsorbates from JGB dissociation, as measured by EQCM. This work highlights the advantage of surface sensitive analytical tools in understanding the structure-performance of levelers.

4.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656110

RESUMEN

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

5.
Adv Mater ; 36(24): e2314252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551140

RESUMEN

The activity-stability trade-off relationship of oxygen reduction reaction (ORR) is a tricky issue that strikes the electrocatalyst population and hinders the widespread application of fuel cells. Here neoteric biphase Pd nanosheets that are structured with ultrathin two-dimensional crystalline Pd inner cores and ≈1 nm thin atomic-hybrid RhOx/Pd amorphous skins, named c/a-Pd@PdRh NSs, for disentangling this trade-off dilemma for alkaline ORR are developed. The superthin amorphous skins significantly amplify the quantity of flexibly low-coordinated atoms for electrocatalysis. An in situ selected oxidation of the top-surface Rh dopants creates atomically hybrid RhOx/Pd disorder surfaces. Detailed energy spectra and theoretical simulation confirm that these RhOx/Pd interfaces can arouse a surface charge redistribution, causing significant electron deficiency and lowered d-band center for surface Pd. Meanwhile, anticorrosive Rh/RhOx species can thermodynamically passivate the neighboring Pd atoms from oxidative dissolution. Thanks to these amplified interfacial effects, the biphase c/a-Pd@PdRh NSs simultaneously exhibit a superhigh ORR activity (5.92 A mg-1, 22.8 times that of Pt/C) and an outstanding long-lasting stability after 100k cycles of accelerated durability test, showcasing unprecedented electrocatalysts for breaking the activity-stability trade-off relationship of ORR. This work paves a bran-new strategy for designing high-performance electrocatalysts through creating modulated amorphous skins on low-dimensional nanomaterials.

6.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38409670

RESUMEN

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

7.
J Am Chem Soc ; 146(6): 3854-3860, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305733

RESUMEN

The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.

8.
Nanomicro Lett ; 16(1): 53, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108934

RESUMEN

Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.

9.
Nano Lett ; 23(21): 9872-9879, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37856869

RESUMEN

Lithium metal deposition is strongly affected by the intrinsic properties of the solid-electrolyte interphase (SEI) and working electrolyte, but a relevant understanding is far from complete. Here, by employing multiple electrochemical techniques and the design of SEI and electrolyte, we elucidate the electrochemistry of Li deposition under mass transport control. It is discovered that SEIs with a lower Li ion transference number and/or conductivity induce a distinctive current transition even under moderate potentiostatic polarization, which is associated with the control regime transition of Li ion transport from the SEI to the electrolyte. Furthermore, our findings help reveal the creation of a space-charge layer at the electrode/SEI interface due to the involvement of the diffusion process of Li ions through the SEI, which promotes the formation of dendrite embryos that develop and eventually trigger SEI breakage and the control regime transition of Li ion transport. Our insight into the very initial dendritic growth mechanism offers a bridge toward design and control for superior SEIs.

10.
Analyst ; 148(17): 4044-4052, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37522852

RESUMEN

Heavy metal ions, which are over-emitted from industrial production, pose a major threat to the ecological environment and human beings. Among the present detection technologies, achieving rapid and on-site detection of contaminants remains a challenge. Herein, capillaries with three-dimensional (3D) hot spot constructures are fabricated to achieve repaid and ultrasensitive mercury ion (Hg2+) detection in water based on surface-enhanced Raman scattering (SERS). The 4-mercapto pyridine (4-Mpy) serves as the Raman reporter with high selectivity, enabling the detection of Hg2+ by changes in adsorption configuration at the trace level. Under optimized conditions, the SERS response of 4-Mpy for Hg2+ exhibits good linearity, ranging from 1 pM to 0.1 µM in a few minutes, and the detection limit of 0.2 pM is much lower than the maximum Hg2+ concentration of 10 nM allowed in drinking water, as defined by the US Environmental Protection Agency (EPA). Simultaneously, combined with the theoretical simulation and experimental results, the above results indicate that the SERS substrates possess outstanding performances in specificity, recovery rate and stability, which may hold great potential for achieving rapid and on-site environmental pollutant detection using a portable Raman spectrometer.

11.
Adv Mater ; 35(39): e2301624, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358373

RESUMEN

Perovskite solar cells (PSCs) have demonstrated over 25% power conversion efficiency (PCE) via efficient surface passivation. Unfortunately, state-of-the-art perovskite post-treatment strategies can solely heal the top interface defects. Herein, an ion-diffusion management strategy is proposed to concurrently modulate the top interfaces, buried interfaces, and bulk interfaces (i.e., grain boundaries) of perovskite film, enabling all-interface defect passivation. Specifically, this method is enabled by applying double interactive salts of octylammonium iodide (OAI) and guanidinium chloride (GACl) onto the 3D perovskite surface. It is revealed that the hydrogen-bonding interaction between OA+ and GA+ decelerates the OA+ diffusion and therefore forms a dimensionally broadened 2D capping layer. Additionally, the diffusion of GA+ and Cl- determines the composition of the bulk and buried interface of PSCs. As a result, n-inter-i-inter-p, i.e., five-layer structured PSCs can be obtained with a champion PCE of 25.43% (certified 24.4%). This approach also enables the substantially improved operational stability of perovskite solar cells.

12.
J Am Chem Soc ; 145(23): 12717-12725, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37268602

RESUMEN

Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.

13.
J Am Chem Soc ; 145(17): 9520-9529, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37076447

RESUMEN

Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 µmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.

14.
J Chem Phys ; 158(9): 094704, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889978

RESUMEN

An insightful understanding of the interaction between the electrolyte and reaction intermediate and how promotion reaction occurs of electrolyte is challenging in the electrocatalysis reaction. Herein, theoretical calculations are used to investigate the reaction mechanism of CO2 reduction reaction to CO with different electrolytes at the Cu(111) surface. By analyzing the charge distribution of the chemisorbed CO2 (CO2 δ-) formation process, we find that the charge transfer is from metal electrode transfer to CO2 and the hydrogen bond interaction between electrolytes and CO2 δ- not only plays a key role in the stabilization of CO2 δ- structure but also reduces the formation energy of *COOH. In addition, the characteristic vibration frequency of intermediates in different electrolyte solutions shows that H2O is a component of HCO3 -, promoting CO2 adsorption and reduction. Our results provide essential insights into the role of electrolyte solutions in interface electrochemistry reactions and help understand the catalysis process at the molecular level.

15.
Angew Chem Int Ed Engl ; 62(3): e202214959, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36307930

RESUMEN

The renewable-electricity-driven CO2 reduction to formic acid would contribute to establishing a carbon-neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2 S3 -derived catalyst that demonstrates a current density of 2.0 A cm-2 with a formate Faradaic efficiency of 93 % at -0.95 V versus the reversible hydrogen electrode. The energy conversion efficiency and single-pass yield of formate reach 80 % and 67 %, respectively, and the durability reaches 100 h at an industrial-relevant current density. Pure formic acid with a concentration of 3.5 mol L-1 has been produced continuously. Our operando spectroscopic and theoretical studies reveal the dynamic evolution of the catalyst into a nanocomposite composed of Bi0 clusters and Bi2 O2 CO3 nanosheets and the pivotal role of Bi0 -Bi2 O2 CO3 interface in CO2 activation and conversion.

16.
Phys Chem Chem Phys ; 24(38): 23301-23308, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36165277

RESUMEN

Orbital interactions between adsorbed molecules and the underlying metal surfaces play critical roles in a wide range of surface and interfacial processes. Establishing a correlation between an experimental observable (e.g., vibrational frequency shift of the adsorbed molecule) and the orbital interactions is of vital importance. Herein, theoretical calculations are used to investigate the vibrational frequency shift of phenyl isocyanide molecules as a probe molecule adsorbed on mono- and bi-layer Pt and Pd covered Au(111) surfaces and Pd2Au4 and Pt2Au4 clusters. By analyzing the density of states (DOS) of the adsorption system, we show that the orbital overlap area of d electronic DOS with a molecular σ or π* orbital, particularly their ratio (Rd-σ/d-π*), can be a meaningful descriptor to explain the frequency shift of the CN moiety. This hypothesis has been verified by simulations for phenyl isocyanide with electron donating NH2- and withdrawing CF3- substituent groups, formonitrile and carbon monoxide. Quasi-linear dependence of the frequency shift on Rd-σ/d-π* is observed for both the red and blue shift regions. Our findings build up on previous notions of electronic interactions, which will provide a more quantitative and solid footing to understand and analyze the frequency shift of adsorbed molecules on metal surfaces and the related electronic interactions and catalytic properties.

17.
J Phys Chem Lett ; 13(39): 9079-9084, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154129

RESUMEN

In situ spectroscopic characterization of the interfacial structure of an organic additive at a Cu electrode is essential for a mechanistic understanding of Cu superfilling at the molecular level. In this work, we demonstrate wide-frequency attenuated total reflection surface-enhanced infrared absorption spectroscopy (wf-ATR-SEIRAS) to elucidate the dissociative adsorption of bis(sodium sulfopropyl)-disulfide (a typical accelerator) on a Cu electrode in conjunction with the electrochemical quartz crystal microbalance measurement and modeling calculations. The wf-ATR-SEIRAS clearly identifies the peaks featuring the sulfonate and methylene groups as well as the C-Ssulfonate and C-Sthiol vibrations of the adsorbate. Analysis of relative peak intensities from 1100 to 650 cm-1 reveals a more tilted alkyl chain axis for the thiolate on Cu than that on Au, which is supported by comparative density functional theory calculations. This work opens a new avenue for the wf-ATR-SEIRAS to study interfacial structures of electroplating additives related to advanced microelectronics manufacture.

18.
Chem Sci ; 13(26): 7765-7772, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35865890

RESUMEN

The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science.

19.
Chem Sci ; 13(20): 5964-5972, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35685812

RESUMEN

In recent years, covalent organic frameworks (COFs) have attracted enormous interest as a new generation of proton-exchange membranes, chemical sensors and electronic devices. However, to design high proton conductivity COFs, especially those with stimulus responsive performance remains a great challenge. Here, the first example of a light/heat switchable COF (COF-HNU9) has been synthesized by grafting a donor-acceptor Stenhouse adduct (DASA) within the channels of a ß-ketoenamine-based COF. DASA groups in the nanopores of COF-HNU9 undergo a reversible open-closed photoisomerization upon visible light irradiation and are recovered by heating. Thus, COF-HNU9 exhibits not only a remarkably high proton conductivity, but also a highly effective switching performance. Under visible light irradiation at 98% RH, the proton conductivity of COF-HNU9 increases by three orders of magnitude at 25 °C and is up to 0.02 S cm-1 at 80 °C. Furthermore, the proton conductivity does not display any significant decrease even after 20 switching cycles. These results have been rationalized by a Grotthuss-type mechanism and verified by DFT calculations. The stimuli-responsive COF is conceptually confirmed by an optical control device with the light/heat switching proton conductive COF-HNU9 film, which is able to remote-control the illumination and switching off of an LED lamp without any current amplifier.

20.
Nano Lett ; 22(13): 5544-5552, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35699945

RESUMEN

In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...