Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(35): 24580-24590, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39165059

RESUMEN

Indoleamine-2,3-dioxygenase-1 (IDO1) pathogenically suppresses immune cell infiltration and promotes tumor cell immune escape by overmetabolizing tryptophan to N-formyl kynurenine in the tumor microenvironment (TME). However, it remains challenging for IDO1 immune checkpoint inhibitors to achieve a significant potency of progression-free survival. Here, we developed a breakthrough in IDO1 inhibition by sono-targeted biobromination reaction using immunostimulating hypobromic-P-phenylperoxydibenzoic acid-linked metallic organic framework nanomedicine (H-MOF NM) to remodel the TME from debrominated hypoxia into hypobromated normoxia and activate the IDO1 immune pathway with in vitro and in vivo remarkable antitumor efficacy. H-MOF NM contains Br+ and O- active ingredients with an enlarged band gap to deactivate IDO1 through an innovative biochemical mechanism, taking control over brominating IDO1 amino acid residues at the active sites in the remodeled TME and subsequently activating the immune response, including DC maturation, T-cell activation, and macrophage polarization. Importantly, the H-MOF NM achieves multiple immune responses with high tumor regression potency by combination sono-immunotherapy. This study describes an excellent IDO1 inhibition strategy through the development of immune biobrominative H-MOF nanomedicine and highlights efficient combination immunotherapy for tumor treatment.


Asunto(s)
Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Estructuras Metalorgánicas , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Microambiente Tumoral/efectos de los fármacos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Int J Oral Sci ; 16(1): 47, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945975

RESUMEN

Dysregulated Epiregulin (EREG) can activate epidermal growth factor receptor (EGFR) and promote tumor progression in head and neck squamous cell carcinoma (HNSCC). However, the mechanisms underlying EREG dysregulation remain largely unknown. Here, we showed that dysregulated EREG was highly associated with enhanced PDL1 in HNSCC tissues. Treatment of HNSCC cells with EREG resulted in upregulated PDL1 via the c-myc pathway. Of note, we found that N-glycosylation of EREG was essential for its stability, membrane location, biological function, and upregulation of its downstream target PDL1 in HNSCC. EREG was glycosylated at N47 via STT3B glycosyltransferases, whereas mutations at N47 site abrogated N-glycosylation and destabilized EREG. Consistently, knockdown of STT3B suppressed glycosylated EREG and inhibited PDL1 in HNSCC cells. Moreover, treatment of HNSCC cells with NGI-1, an inhibitor of STT3B, blocked STT3B-mediated glycosylation of EREG, leading to its degradation and suppression of PDL1. Finally, combination of NGI-1 treatment with anti-PDLl therapy synergistically enhanced the efficacy of immunotherapy of HNSCC in vivo. Taken together, STT3B-mediated N-glycosylation is essential for stabilization of EREG, which mediates PDL1 upregulation and immune evasion in HNSCC.


Asunto(s)
Antígeno B7-H1 , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Regulación hacia Arriba , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Western Blotting , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Epirregulina , Glicosilación , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Evasión Inmune , Sialiltransferasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
3.
Waste Manag ; 170: 341-353, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748282

RESUMEN

The objective of this study was to investigate the potential effects of thermophilic bacterial consortia on compost efficiency and quality. The application of bacterial consortia resulted in an earlier onset of the thermophilic period (THP), an increased upper temperature limit, and an extended duration of the THP by 3-5 days compared to the control group (CK). Microbial inoculation significantly improved the efficiency of organic matter degradation, as well as the content of water-soluble nitrogen (WSN) and humic acid-carbon (HAC). In the case of consortium Ⅱ inoculation (T2), the activities of cellobiohydrolase, ß-glucosidase, and protease were increased by 81.81 %, 70.13 %, and 74.09 % at the THP respectively compared to CK. During the maturation stage, T2 also exhibited the highest PV, n/PIII, n value (1.33) and HAC content (39.53 mg·g-1), indicating that inoculation of consortium Ⅱ effectively promoted substrate maturity and product quality. Moreover, this inoculation effectively optimized the bacterial communities, particularly the growth of Planococcus, Chelatococcus, and Chelativorans during the composting, which were involved in carbon and nitrogen conversion or HAC synthesis. Carbohydrate and amino acid metabolism, and membrane transport were predominant in the consortia-inoculated samples, with an increased gene abundance, suggesting that inoculation contributed to promoting the biodegradation of lignocellulose and the exchange of favorable factors. In conclusion, this study demonstrates that inoculating thermophilic bacterial consortia has a positive impact on enhancing the resource utilization efficiency of agricultural waste and improving the quality of compost products.

4.
Front Endocrinol (Lausanne) ; 14: 1136120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229458

RESUMEN

Background: We attempted to examine the clinical characteristics in patients with breast cancer (BC) and thyroid cancer (TC); explore the potential mechanisms of tumorigenesis and progression. Methods: Using the Surveillance, Epidemiology, and End Result Program-9 (SEER-9) database, a retrospective study (1975-2017) was conducted on patients with BC and TC. We identified the common differentially expressed genes involved in BC and TC using the Gene Expression Omnibus database (GEO). Immunohistochemical staining (IHC) was performed to verify the expression of the hit gene in patients with co-occurrence of BC and TC. Using The Cancer Genome Atlas (TCGA) database, the relationship between gene expression and clinicopathological characters was determined. Gene set enrichment analysis (GSEA) was used to identify the pathways enriched in BC and TC. Results: BC patients had a higher predisposition to develop TC (standardized incidence ratio, SIR: 1.29) and vice-versa (SIR: 1.12). Most of these patients were differentiated thyroid carcinoma (DTC) and hormone receptor (HR) - positive BC. The mRNA expression of COMP (Cartilage oligomeric matrix protein) was significantly overexpressed in BC and TC by analyzing the GEO database. The protein expression of COMP was increased in both BC and TC tissues obtained from the same patients validated by IHC. COMP was correlated with worse OS in BC (stage II-IV) and TC; it was the independent factor for prognosis of BC. GSEA indicated that the estrogen response and epithelial-mesenchymal transition (EMT) pathways were significantly enriched in both TC- and BC- COMP overexpressed groups. Conclusion: The co-occurrence risk of BC and TC in the same individual is higher than in the general population. Overexpression of COMP could promote oncogenesis and progression in patients with BC and TC through estrogen signaling and EMT pathways.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Tiroides , Humanos , Femenino , Estudios Retrospectivos , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Pronóstico , Estrógenos
5.
Bioact Mater ; 24: 236-250, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36606257

RESUMEN

Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.

6.
Bioresour Technol ; 361: 127751, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35940325

RESUMEN

This study aimed to reveal the potential effects of exogenous lignocellulases addition on the composting efficiency and microbial communities. The lignocellulases addition at the mesophilic phase (MEP) greatly expedited the substrate conversion and the rise of temperature at the initial stage, driving the early arrival of thermophilic phase (THP), caused by the positive effects of Sphingobacterium and Brevundimonas. When being added at the THP, the potential functions and interactions of microbial communities were stimulated, especially for Thermobispora and Mycothermus, which prolonged the duration of the THP and expedited the humic acid formation. Simultaneous addition (MEP and THP) significantly altered the microbial community succession and activated the microbes that contributed to the lignocellulases secretion, exhibiting the highest cellobiohydrolase (36.19 ± 3.25 U· g-1 dw) and xylanase (47.51 ± 3.32 U·g-1 dw) activity at the THP. These findings provide new strategies that can be effectively utilized to improve the efficiency and quality of composting.


Asunto(s)
Compostaje , Microbiota , Bacterias Aerobias , Sustancias Húmicas , Estiércol/microbiología , Suelo , Temperatura
7.
Bioresour Technol ; 354: 127216, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35472639

RESUMEN

Humus is the final product of humus precursors (HPS) during the humification process, while the associated mechanisms of humus formation have not been clarified. Here, the HPS degradation intermediate and core fungal function for wheat straw and chicken manure compost (SCM), cow dung compost (CD), Chinese traditional medicine residue compost (CTM) and mushroom dreg and chicken manure compost (MCM) was investigated during the thermophilic phase. The results showed SCM and MCM were rich in proteins, lipids, cellulose, low-molecular-weight organic acids, while CD and CTM contained abundant carbohydrates, aliphatic compounds, easily biodegradable aromatic structures, and intermediates from the lignocellulose degradation. In particular, the HPS degrading intermediates including O-alkyl-C and aromatic C compounds were the critical factors, and Scedosporium, Hypsizygus and Remersonia were the core fungal genera for the humification. Furthermore, the potential fungal functional genes involved in carbohydrate and lignin degradation might be the key factors to drive the humification process.


Asunto(s)
Agaricales , Compostaje , Micobioma , Animales , Bovinos , Femenino , Estiércol , Suelo
8.
Front Chem ; 10: 839062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273950

RESUMEN

Deteriorated bone quality in osteoporosis challenges the success of implants, which are in urgent need for better early osseointegration as well as antibacterial property for long-term stability. As osteoporotic bone formation tangles with angiogenic clues, the relationship between osteogenesis and angiogenesis has been a novel therapy target for osteoporosis. However, few designs of implant coatings take the compromised osteoporotic angiogenic microenvironment into consideration. Here, we investigated the angiogenic effects of bioactive strontium ions of different doses in HUVECs only and in a co-culture system with BMSCs. A proper dose of strontium ions (0.2-1 mM) could enhance the secretion of VEGFA and Ang-1 in HUVECs as well as in the co-culture system with BMSCs, exhibiting potential to create an angiogenic microenvironment in the early stage that would be beneficial to osteogenesis. Based on the dose screening, we fabricated a bioactive titanium surface doped with zinc and different doses of strontium by plasma electrolytic oxidation (PEO), for the establishment of a microenvironment favoring osseointegration for osteoporosis. The dual bioactive elements augmented titanium surfaces induced robust osteogenic differentiation, and enhanced antimicrobial properties. Augmented titanium implant surfaces exhibited improved bone formation and bone-implant contact under comprehensive assessment of an in vivo bone-implant interface. In conclusion, zinc- and strontium-augmented titanium surface benefits the osseointegration in osteoporosis via promoting osteogenic differentiation, exerting antibacterial efficacy, and stimulating early angiogenesis.

9.
Cell Death Dis ; 12(11): 993, 2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34689153

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor with poor clinical outcomes due to recurrence, metastasis, and treatment resistance. Cancer stem cells (CSCs), a small population among tumor cells, are proposed to be responsible for tumor initiation, progression, metastasis, drug resistance, and recurrence. Here we show that high LSD1 expression was a predictor of poor prognosis for HNSCC patients. We found that high expression of LSD1 is essential for the maintenance of the CSC properties by regulating Bmi-1 expression. Moreover, tumor LSD1 ablation suppresses CSC-like characteristics in vitro and inhibits tumorigenicity in vivo in immune-deficient xenografts. However, this deletion induces the upregulation of PDL1 levels, which compromises antitumor immunity and reduces antitumor efficacy in an immune-competent mouse model. Functionally, the combination of LSD1 inhibitor and anti-PD-1 monoclonal antibody can overcome tumor immune evasion and greatly inhibit tumor growth, which was associated with reduced Ki-67 level and augmented CD8+ T cell infiltration in immunocompetent tumor-bearing mouse models. In summary, these findings provide a novel and promising combined strategy for the treatment of HNSCC using a combination of LSD1 inhibition and PD-1 blockade.


Asunto(s)
Histona Demetilasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Anciano , Animales , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
10.
ACS Omega ; 6(14): 9449-9459, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33869925

RESUMEN

Injectable hydrogels provide an effective strategy for minimally invasive treatment on irregular bony defects in the maxillofacial region. To improve the osteoinduction of gelatin methacrylate (GelMA), we fabricated a three-dimensional (3D) culture system based on the incorporation of magnesium ammonium phosphate hexahydrate (struvite) into GelMA. The optimal concentration of struvite was investigated using the struvite extracts, and 500 µg mL-1 was found to be the most suitable concentration for the osteogenesis of dental pulp stem cells (DPSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). We prepared the GelMA composite (MgP) with 500 µg mL-1 struvite. Struvite did not affect the cross-linking of GelMA and released Mg2+ during degradation. The cell delivery system using MgP improved the laden-cell viability, upregulated the expression of osteogenic and angiogenic-differentiation-related genes, and promoted cell migration. Overall, the modifications made to the GelMA in this study improved osteoinduction and demonstrated great potential for application in vascularized bone tissue regeneration.

11.
Bioact Mater ; 6(7): 2011-2028, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33426373

RESUMEN

Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.

12.
Onco Targets Ther ; 13: 12649-12659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335405

RESUMEN

BACKGROUND: Wntless (Wls) is an essential protein that is necessary for the secretion of Wnt proteins. While numerous researches have demonstrated that aberrations in Wnt/ß-catenin expression lead to tumorigenesis and progression in many cancer types, the effects of Wls in breast cancer (BC) are less studied. METHODS: The mRNA and protein expression of Wls in BC cell lines were detected by RT-qPCR and Western blot; the protein expression of patient samples was detected by immunohistochemistry (IHC). The associations between Wls expression and clinicopathological factors as well as survival time, including overall survival (OS) and disease-free survival (DFS) were analyzed. Bioinformatics analysis was used to reveal the correlation between Wls genes and associated genes or pathways. RESULTS: Wls was overexpressed in BC cell lines and tissues. The expression level of Wls was significantly correlated with tumor size, estrogen receptor (ER), progesterone receptor (PR), Ki-67, molecular classification, and follow-up status. Spearman correlation analysis showed that Wls protein expression was negatively correlated with ER and PR, which was confirmed by bioinformatics analysis in mRNA level. However, there were positive relationships with MBNG (modified Black's nuclear grade), tumor size, Ki-67, molecular classification, follow-up, and vital status. Univariate and multivariate analysis showed that Wls was an independent prognostic factor for OS and DFS in BC patients. Moreover, Wls was a significant prognostic indicator of OS and DFS in a hormone receptor-positive (HR+) subgroup. GSEA showed that estrogen and androgen response, as well as epithelial-mesenchymal transition pathways, were up-regulated in the Wls high-expression group. CONCLUSION: Overexpression of Wls is a significant marker of worse prognosis in BC and might play a crucial role in the HR+ subgroup.

13.
Theranostics ; 10(23): 10589-10605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929368

RESUMEN

Rationale: The oncogenesis of head and neck squamous cell carcinoma (HNSCC) is believed to result from oncogene activation and tumor suppressor inactivation. Here, we identified a new oncogenic role for the EREG gene in HNSCC. Methods: The TCGA database and immunohistochemistry assay were used to analyze expression of EREG in HNSCC tissues. Immunoblotting was performed to identify the EGFR-mediated pathways altered by EREG. The role of EREG in oncogenesis was investigated in vivo and in vitro. Results: Upregulated EREG expression predicted a poor prognosis and triggered HNSCC oncogenic transformation by activating the epidermal growth factor receptor (EGFR) signaling pathway. We also demonstrated the direct association of EREG with EGFR and that this binding required EGFR domains I and III and the N57 residue of EREG. Moreover, EREG overexpression was shown to promote HNSCC oncogenesis by inducing C-Myc expression, and the pharmacological inhibition of C-Myc rescued EREG-promoted HNSCC oncogenesis. Unlike other EGFR ligands, EREG could mimic EGFR mutations by sustaining the activation of the EGFR-Erk pathway, and high EREG expression was positively associated with the response to treatment with the EGFR inhibitor erlotinib. Furthermore, knockdown of EREG decreased sensitivity to erlotinib treatment in vitro and in vivo. Conclusions: These results identify the EREG-EGFR-C-Myc pathway as a crucial axis that drives HNSCC oncogenesis and show that EREG expression could be a predictive functional marker of sensitivity to erlotinib therapy in HNSCC.


Asunto(s)
Resistencia a Antineoplásicos/genética , Epirregulina/metabolismo , Clorhidrato de Erlotinib/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular Tumoral , Epirregulina/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Manag Res ; 12: 6655-6663, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801899

RESUMEN

BACKGROUND: Salivary adenoid cystic carcinoma (SACC), a rare cancer arising in the salivary glands, is characterized by high rates of relapse and distant metastasis. Epidermal growth factor receptor (EGFR) has been implicated in SACC carcinogenesis. However, prospective trials of EGFR-targeting therapies in SACC are limited, and the optimum regimen is unclear. METHODS: The effects of erlotinib on cell proliferation, colony formation, ALDH enzymatic activity and tumorsphere formation were investigated in SACC cells. Expression of the cancer stem cell markers Bmi-1 and Oct4 was evaluated using Western blotting. RESULTS: We found that while it robustly inhibited cell growth, targeting EGFR with erlotinib enriched the ALDH+ cell population and elevated the clonogenicity of SACC cells, suggesting an increase in stem cell-like potential. In addition, we found that suppression of EGFR kinase activity with erlotinib led to the activation of Notch1 signaling, leading to an increase in stem cell-like properties. Moreover, the γ-secretase inhibitor GSI treatment eliminated the erlotinib-induced increase in stem cell-like properties by decreasing Notch activity. CONCLUSION: Our results provide an explanation for the worsened survival observed in some studies of erlotinib therapy in SACC and provide potential therapeutic strategies by combined blockade of the EGFR and Notch1 pathways.

15.
Biomaterials ; 260: 120334, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32862124

RESUMEN

The recapitulation of cartilage/bone formation via guiding induced pluripotent stem cells (iPSCs) differentiation toward chondrogenic mesoderm lineage is an ideal approach to investigate cartilage/bone development and also for cartilage/bone regeneration. However, current induction protocols are time-consuming and complicated to follow. Here, we established a rapid and efficient approach that directly induce iPSCs differentiation toward chondrogenic mesoderm lineage by regulating the crucial Bmp-4 and FGF-2 signaling pathways using a 3D rotary suspension culture system. The mechanical stimulation from 3D rotary suspension accelerates iPSCs differentiation toward mesodermal and subsequent chondrogenic lineage via the Bmp-4-Smad1 and Tgf-ß-Smad2/3 signaling pathways, respectively. The scaffold-free homogenous cartilaginous pellets or hypertrophic cartilaginous pellets derived from iPSCs within 28 days were capable of articular cartilage regeneration or vascularized bone regeneration via endochondral ossification in vivo, respectively. This biomimetic culture approach will contribute to research related to cartilage/bone development, regeneration, and hence to therapeutic applications in cartilage-/bone-related diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteogénesis , Biomimética , Cartílago , Diferenciación Celular , Condrocitos , Condrogénesis
16.
Oncol Lett ; 19(3): 1899-1905, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194685

RESUMEN

The present study aimed to investigate the role of the long non-coding RNA EGFR-AS1 in bladder cancer (BC). In this study gene expression of both BC and non-tumor tissues from BC patients were measured by quantitative PCR. Cell transfections were performed to analyze gene interactions in HT-1197 cells. Transwell assays were performed to analyze cell invasion and migration of HT-1197 cells. It was revealed that epidermal growth factor receptor-antisense RNA 1 (EGFR-AS1) was upregulated in BC and positively associated with rho associated coiled-coil containing protein kinase 2 (ROCK2). Analysis of data collected in follow-ups indicated that EGFR-AS1 expression was significantly associated with poorer overall survival of patients with BC. Moreover, in bladder cancer cells, EGFR-AS1 overexpression mediated the upregulation of ROCK2, while microRNA (miR)-381 mediated the downregulation of ROCK2. However, EGFR-AS1 and ROCK2 failed to affect each other. Bioinformatics analysis indicated that miR-381 binds EGFR-AS1. In addition, EGFR-AS1 and ROCK2 overexpression resulted in the promotion of cell invasiveness and migration of HT-1197 BC cells. Conversely, miR-381 was revealed to partially reverse the effect of EGFR-AS1 overexpression. Therefore, EGFR-AS1 may sponge miR-381 to upregulate ROCK2 in BC, thereby promoting cell invasion and migration.

17.
Materials (Basel) ; 13(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861768

RESUMEN

A low density, medium entropy alloy (LD-MEA) Ti33Al33V34 (4.44 g/cm3) was successfully developed. The microstructure was found to be composed of a disordered body-centered-cubic (BCC) matrix and minor ordered B2 precipitates based on transmission electron microscopy characterization. Equilibrium and non-equilibrium modeling, simulated using the Calphad approach, were applied to predict the phase constituent. Creep behavior of {110} grains at elevated temperatures was investigated by nanoindentation and the results were compared with Cantor alloy and Ti-6Al-4V alloy. Dislocation creep was found to be the dominant mechanism. The decreasing trend of hardness in {110} grains of BCC TiAlV is different from that in {111} grains of face-centered-cubic (FCC) Cantor alloy due to the different temperature-dependence of Peierls stress in these two lattice structures. The activation energy value of {110} grains was lower than that of {111} grains in FCC Cantor alloy because of the denser atomic stacking in FCC alloys. Compared with conventional Ti-6Al-4V alloy, TiAlV possesses considerably higher hardness and specific strength (63% higher), 83% lower creep displacement at room temperature, and 50% lower creep strain rate over the temperature range from 500 to 600 °C under the similar 1150 MPa stress, indicating a promising substitution for Ti-6Al-4V alloy as structural materials.

18.
BMC Res Notes ; 12(1): 733, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703730

RESUMEN

OBJECTIVE: The purpose of this study was to determine the effects of the lower-body positive pressure on surface blood flow during standing still and treadmill walking to explore cardiovascular safety for application to rehabilitation treatment. Thirteen healthy volunteers participated in the experiment and surface blood flows were measured in the forehead, thigh, calf, and the top of the foot during standing still and walking under various pressure conditions (0 kPa, 5 kPa, and 6.7 kPa). RESULTS: Lower-body positive pressure decreased the blood flow in the forehead and the thigh during walking (p < .05 for each), whereas an increasing trend in blood flow was observed during standing still (p < .05). Furthermore, in the forehead and thigh, the extent of blood flow increase at the onset of walking was found to decrease in accordance with the applied pressure (p < .01 for each). These findings suggest that during walking, lower-body positive pressure modulates the blood flow, which implies safeness of this novel apparatus for use during orthopedic rehabilitation treatment.


Asunto(s)
Prueba de Esfuerzo , Presión , Flujo Sanguíneo Regional/fisiología , Caminata/fisiología , Peso Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Oncol Lett ; 18(5): 5392-5398, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31620199

RESUMEN

It is well established that long intergenic non-protein coding RNA 1638 (LINC01638) promotes the development and progression of breast cancer, whereas its roles in other human diseases are currently unknown. In the present study, expression of LINC01638 and ROCK2 was analyzed using quantitative PCR, ELISA and western blot. Receiver operating characteristic curve was used for diagnostic analysis. Cell transfections were performed to analyze interactions between LINC01638 and ROCK2, while Transwell assays were performed to analyze invasion and migration of the bladder cancer HT-1197 and HT-1376 cell lines. It was observed that LINC01638 and Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) were significantly upregulated in the plasma of patients with early stage (stage I and II) bladder cancer compared with in healthy controls. Upregulation of LINC01638 and ROCK2 distinguished patients with early stage bladder cancer from healthy controls. Plasma levels of LINC01638 and ROCK2 were positively correlated in patients with bladder cancer, but not in healthy controls. A follow-up study after surgical resection revealed that LINC01638 and ROCK2 were further upregulated in patients with distant recurrence, or distant and local recurrence, but not in patients with local recurrence and no recurrence. Overexpression of LINC01638 led to ROCK2 upregulation in bladder cancer cells, whereas ROCK2 overexpression did not significantly affect LINC01638 expression. Overexpression of LINC01638 and ROCK2 mediated the promoted migration and invasion of bladder cancer cells, and ROCK2 small interfering RNA silencing attenuated the enhancing effects of LINC01638 on cancer cell migration and invasion. Therefore, LINC01638 may mediate the postoperative distant recurrence of bladder cancer by upregulating ROCK2.

20.
Carbohydr Polym ; 199: 244-255, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143127

RESUMEN

Scaffolds are crucial for bone tissue engineering since their compositions and properties could significantly affect the seeded cells' behavior. In this study, we developed an interpenetrating network hydrogel by utilizing Ca2+ from calcium silicate (CS) to simultaneously crosslink silk fibroin (SF) and sodium alginate (SA). Afterwards, the hydrogels were lyophilized to obtain scaffolds and systematically evaluated by physical characterizations, in vitro cytocompatibility and alkaline phosphatase (ALP) assay. We found that CS inside the porous structure of SF/CS/SA scaffolds could remarkably enhance hydrophilicity, degradation, compression resistance, bioactivity and pH of SF/CS/SA scaffolds. Scaffolds with CS concentrations of 25% and 12% (25/CS and 12/CS) could dominantly stimulate proliferation of bone marrow stromal cells (BMSCs). Besides, BMSCs cultured with 25/CS and 12/CS scaffolds showed high ALP activity, respectively. Consequently, this study suggested SF/CS/SA scaffolds possess potential in non-loading bone tissue engineering application.


Asunto(s)
Alginatos/farmacología , Materiales Biocompatibles/farmacología , Compuestos de Calcio/química , Fibroínas/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Silicatos/química , Andamios del Tejido/química , Alginatos/síntesis química , Alginatos/química , Alginatos/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Compuestos de Calcio/síntesis química , Compuestos de Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Fibroínas/síntesis química , Fibroínas/química , Fibroínas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Mecánicos , Osteogénesis/efectos de los fármacos , Porosidad , Ratas , Silicatos/síntesis química , Silicatos/metabolismo , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...