Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406465, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705847

RESUMEN

The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mA h g-1 at a record-high mass loading of 66.2 mg cm-2 and 100% capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.

2.
Chemistry ; : e202400651, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705845

RESUMEN

PEMWE is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic OER and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. The 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr-1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

3.
Angew Chem Int Ed Engl ; : e202400916, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767752

RESUMEN

Prussian blue analogs (PBAs) as insertion-type cathodes have attracted significant attention in various aqueous batteries to accommodate metal or non-metal ions while suffering from serious dissolution and consequent inferior lifespan. Herein, we reveal that the dissolution of PBAs primarily originates from the locally elevated pH of electrolytes that are caused by proton co-insertion during discharge. To address this issue, a water-locking electrolyte (WLE) has been strategically implemented, which interrupts the generation and Grotthuss diffusion of protons by breaking the well-connected hydrogen bonding network in aqueous electrolytes. As a result, the WLE enables the iron hexacyanoferrate to endure over 1000 cycles at a 1C rate and supports a high-voltage decoupled cell with an average voltage of 1.95 V. These findings provide insights for mitigating dissolution problems in electrode materials, thereby enhancing the viability and performance of aqueous batteries.

4.
Huan Jing Ke Xue ; 45(2): 844-853, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471923

RESUMEN

Pharmaceutical industry wastewater contains a large number of emerging pollutants such as antibiotics, antibiotic resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). The present biological water treatment processes cannot effectively remove these pollutants. Eventually, they are discharged into various water bodies or penetrate into soil with the effluent, causing environmental pollution and affecting human health. Therefore, exploring the pollution characteristics of antibiotics, ARBs, and ARGs in pharmaceutical wastewater and knowing the methods to detect and control antibiotic resistance pollution in wastewater are crucial for reducing the contamination of antibiotics and ARGs and assessing the ecological risks of antibiotic resistance. Aiming at the problem of antibiotic resistance pollution in a pharmaceutical wastewater treatment plant (PWWTPs), the pollution status of antibiotics, ARBs, and ARGs in pharmaceutical wastewater was discussed. Different assessment methods of antibiotic resistance in pharmaceutical wastewater were summarized. Finally, the wastewater treatment technologies commonly used to remove antibiotics and ARGs in PWWTPs were summarized in order to provide a theoretical basis for the ecological risk assessment and scientific control of antibiotics and ARGs in the environment.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Preparaciones Farmacéuticas
5.
Adv Mater ; : e2313388, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350631

RESUMEN

Organic electrode materials (OEMs) have gathered extensive attention for aqueous zinc-ion batteries (AZIBs) due to their structural diversity and molecular designability. However, the reported research mainly focuses on the design of the planar configuration of OEMs and does not take into account the important influence of the spatial structure on the electrochemical properties, which seriously hamper the further performance liberation of OEMs. Herein, this work has designed a series of thioether-linked naphthoquinone-derived isomers with tunable spatial structures and applied them as the cathodes in AZIBs. The incomplete conjugated structure of the elaborately engineered isomers can guarantee the independence of the redox reaction of active groups, which contributes to the full utilization of active sites and high redox reversibility. In addition, the position isomerization of naphthoquinones on the benzene rings changes the zincophilic activity and redox kinetics of the isomers, signifying the importance of spatial structure on the electrochemical performance. As a result, the 2,2'-(1,4-phenylenedithio) bis(1,4-naphthoquinone) (p-PNQ) with the smallest steric hindrance and the most independent redox of active sites exhibits a high specific capacity (279 mAh g-1 ), an outstanding rate capability (167 mAh g-1 at 100 A g-1 ), and a long-term cycling lifetime (over 2800 h at 0.05 A g-1 ).

6.
JACS Au ; 3(11): 2987-2992, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034964

RESUMEN

A rare earth element doping strategy is reported to boost the activity and enhance the stability of MnO2 for selective formamide production through electrocatalytic oxidation coupling (EOC) of methanol and ammonia. MnO2 doped with 1% Pr was selected as the best candidate with an optimized formamide yield of 211.32 µmol cm-2 h-1, a Faradaic efficiency of 22.63%, and a stability of more than 50 h. The easier formation of Mn6+ species and the lower dissolution rate of Mn species over Pr-doped MnO2 revealed by in situ Raman spectra were responsible for the boosted formamide production and enhanced stability. In addition, a two-electrode flow electrolyzer was developed to integrate EOC with C2H2 semihydrogenation for simultaneously producing value-added products in both the anode and cathode.

7.
Angew Chem Int Ed Engl ; 62(35): e202307365, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37423888

RESUMEN

The slow reaction kinetics and structural instability of organic electrode materials limit the further performance improvement of aqueous zinc-organic batteries. Herein, we have synthesized a Z-folded hydroxyl polymer polytetrafluorohydroquinone (PTFHQ) with inert hydroxyl groups that could be partially oxidized to the active carbonyl groups through the in situ activation process and then undertake the storage/release of Zn2+ . In the activated PTFHQ, the hydroxyl groups and S atoms enlarge the electronegativity region near the electrochemically active carbonyl groups, enhancing their electrochemical activity. Simultaneously, the residual hydroxyl groups could act as hydrophilic groups to enhance the electrolyte wettability while ensuring the stability of the polymer chain in the electrolyte. Also, the Z-folded structure of PTFHQ plays an important role in reversible binding with Zn2+ and fast ion diffusion. All these benefits make the activated PTFHQ exhibit a high specific capacity of 215 mAh g-1 at 0.1 A g-1 , over 3400 stable cycles with a capacity retention of 92 %, and an outstanding rate capability of 196 mAh g-1 at 20 A g-1 .

8.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3753-3764, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475067

RESUMEN

Prunus mume is an edible and medicinal material, and Mume Fructus is its processed product, which was first recorded in Shennong's Classic of Materia Medica(Shen Nong Ben Cao Jing). It is an effective drug for stopping diarrhea with astringents and promoting fluid production to quiet ascaris. By consulting the ancient herbal works of the past dynasties, modern codes, and other rela-ted literature, this paper sorted out the medicinal evolution of Mume Fructus, examined the ancient efficacy of Mume Fructus and the main indications, and summarized the inclusion of Mume Fructus in national and provincial standards. It is recorded in the ancient herbal works of the past dynasties that Mume Fructus can be processed by various methods such as roasting, stir-frying or micro-frying, stir-frying with charcoal, single steaming, steaming with wine, and steaming after soaking in wine or vinegar, and prepared into pills, powders, and ointments, which are used in the treatment of fatigue, diabetes, malaria, dysentery, ascariasis, and other diseases. Mume Fructus has been included in nine editions of Chinese Pharmacopoeia and 19 provincial and municipal preparation specifications. The processing method of Mume Fructus is determined, namely, clean P. mume should be softened by moistening in water or steaming and pitted. By reviewing the effects of processing on its chemical composition, pharmacological effects, and its modern clinical application, this paper identified the following issues. The ancient application methods of Mume Fructus are diverse but less commonly used in modern times, there is a lack of standardized research on the processing, and the research on the changes caused by the difference in Mume Fructus before and after processing is not deep. Therefore, it is necessary to further investigate the change pattern of its chemical composition before and after processing and its correlation between its medicinal activity to standardize the processing technology and provide a solid basis for the use of Mume Fructus in parts and its quality control.


Asunto(s)
Medicamentos Herbarios Chinos , Materia Medica , Prunus , Medicamentos Herbarios Chinos/farmacología , Materia Medica/análisis , Frutas/química , Control de Calidad , Prunus/química , Medicina Tradicional China
9.
Adv Mater ; 35(22): e2301088, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37036047

RESUMEN

Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g-1 (nearly a full utilization of the active groups), superior rate capability of 120 mAh g-1 , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g-1 . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.

10.
Sci Bull (Beijing) ; 67(14): 1477-1485, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546191

RESUMEN

Single-atom catalysts (SACs) have attracted increasing concerns in electrocatalysis because of their maximal metal atom utilization, distinctive electronic properties, and catalytic performance. However, the isolated single sites are disadvantageous for reactions that require simultaneously activating different reactants/intermediates. Fully exposed metal cluster catalyst (FECC), inheriting the merits of SACs and metallic nanoparticles, can synergistically adsorb and activate reactants/intermediates on their multi-atomic sites, demonstrating great promise in electrocatalytic reactions. Here a facile method to regulate the atomic dispersion of Ni species from cluster to single-atom scale for efficient CO2 reduction was developed. The obtained Ni FECC exhibits high Faradaic efficiency of CO up to 99%, high CO partial current density of 347.2 mA cm-2, and robust durability under 20 h electrolysis. Theoretical calculations illuminate that the ensemble of multiple Ni atoms regulated by sulfur atoms accelerates the reaction kinetics and thus improves CO production.

11.
Angew Chem Int Ed Engl ; 61(19): e202116635, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35274415

RESUMEN

The severe performance degradation of high-capacity Li-O2 batteries induced by Li dendrite growth and concentration polarization from the low Li+ transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li+ transfer number (0.84) and conductivity (2.5 mS cm-1 ), but also the perfluorinated anion of LN produces a LiF-rich SEI for protecting the Li anode from dendrite growth. Thus, the Li-O2 battery with a LN-based electrolyte achieves an all-round performance improvement, like low charge overpotential (0.18 V), large discharge capacity (9508 mAh g-1 ), and excellent cycling performance (225 cycles). Besides, the fabricated pouch-type Li-air cells exhibit promising applications to power electronic equipment with satisfactory safety.

12.
Small ; 18(17): e2107833, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35347827

RESUMEN

Constructing solid-state lithium-oxygen batteries (SSLOBs) holds a great promise to solve the safety and stability bottlenecks faced by lithium-oxygen batteries (LOBs) with volatile and flammable organic liquid electrolytes. However, the realization of high-performance SSLOBs is full of challenges due to the poor ionic conductivity of solid electrolytes, large interfacial resistance, and limited reaction sites of cathodes. Here, a flexible integrated cathode-electrolyte structure (ICES) is designed to enable the tight connection between the cathode and electrolyte through supporting them on a 3D SiO2 nanofibers (NFs) framework. The intimate cathode-electrolyte structure and the porous SiO2 NFs scaffold combination are favorable for decreasing interfacial resistance and increasing reaction sites. Moreover, the 3D SiO2 NFs framework can also behave as an efficient inorganic filler to enhance the ionic conductivity of the solid polymer electrolyte and its ability to inhibit lithium dendrite growth. As a result, the elaborately designed ICES can simultaneously tackle the issues that limit the performance liberation of SSLOBs, making the batteries deliver a high discharge capacity and a long lifetime of 145 cycles with a cycling capacity of 1000 mAh g-1 at 60 °C, much superior to coventional SSLOBs (50 cycles).

13.
J Am Chem Soc ; 144(13): 5827-5833, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35324178

RESUMEN

The lithium-oxygen battery (LOB) with a high theoretical energy density (∼3500 Wh kg-1) has been regarded as a strong competitor for next-generation energy storage systems. However, its performance is still far from satisfactory due to the lack of stable electrolyte that can simultaneously withstand the strong oxidizing environment during battery operation, evaporation by the semiopen feature, and high reactivity of lithium metal anode. Here, we have developed a deep eutectic electrolyte (DEE) that can fulfill all the requirements to enable the long-term operation of LOBs by just simply mixing solid N-methylacetamide (NMA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a certain ratio. The unique interaction of the polar groups in the NMA with the cations and anions in the LiTFSI enables DEE formation, and this NMA-based DEE possesses high ionic conductivity, good thermal, chemical, and electrochemical stability, and good compatibility with the lithium metal anode. As a result, the LOBs with the NMA-based DEE present a high discharge capacity (8647 mAh g-1), excellent rate performance, and superb cycling lifetime (280 cycles). The introduction of DEE into LOBs will inject new vitality into the design of electrolytes and promote the development of high-performance LOBs.

14.
Yi Chuan ; 44(3): 208-215, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35307644

RESUMEN

Cellular reprogramming is the process during which epigenetic markers of nuclear genome are deleted and remodeled during sperm-egg binding or nuclear transplantation, thereby rendering differentiated cells totipotent. The main cellular reprogramming methods are cell fusion, somatic cell nuclear transplantation, and induced pluripotent stem cells. Nucleosomes are the basic structural and functional units of chromatin, and nucleosome localization has an important role in regulating gene expression and the state of the cell. The occupancy and location of nucleosomes also change dramatically during cellular reprogramming, while the occupancy of nucleosomes around the transcriptional start site also decreases to promote the expression of pluripotency genes. In this review, we summarize the role of nucleosome localization in gene activation and repression, chromatin remodeling, and transcription factor recognition, with the aim of providing an important basis for an in-depth analysis of cellular reprogramming mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nucleosomas , Reprogramación Celular/genética , Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Sitio de Iniciación de la Transcripción
15.
Nat Rev Chem ; 6(7): 505-517, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37117314

RESUMEN

Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.

16.
Natl Sci Rev ; 8(2): nwaa150, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34691570

RESUMEN

The dendrite growth of Li anodes severely degrades the performance of lithium-oxygen (Li-O2) batteries. Recently, hybrid solid electrolyte (HSE) has been regarded as one of the most promising routes to tackle this problem. However, before this is realized, the HSE needs to simultaneously satisfy contradictory requirements of high modulus and even, flexible contact with Li anode, while ensuring uniform Li+ distribution. To tackle this complex dilemma, here, an HSE with rigid Li1.5Al0.5Ge1.5(PO4)3 (LAGP) core@ultrathin flexible poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) shell interface has been developed. The introduced large amount of nanometer-sized LAGP cores can not only act as structural enhancer to achieve high Young's modulus but can also construct Li+ diffusion network to homogenize Li+ distribution. The ultrathin flexible PVDF-HFP shell provides soft and stable contact between the rigid core and Li metal without affecting the Li+ distribution, meanwhile suppressing the reduction of LAGP induced by direct contact with Li metal. Thanks to these advantages, this ingenious HSE with ultra-high Young's modulus of 25 GPa endows dendrite-free Li deposition even at a deposition capacity of 23.6 mAh. Moreover, with the successful inhibition of Li dendrites, the HSE-based quasi-solid-state Li-O2 battery delivers a long cycling stability of 146 cycles, which is more than three times that of gel polymer electrolyte-based Li-O2 battery. This new insight may serve as a starting point for further designing of HSE in Li-O2 batteries, and can also be extended to various battery systems such as sodium-oxygen batteries.

17.
Angew Chem Int Ed Engl ; 60(51): 26806-26812, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34582084

RESUMEN

The performance of electrode material is correlated with the choice of electrolyte, however, how the solvation has significant impact on electrochemical behavior is underdeveloped. Herein, N-heteropentacenequinone (TAPQ) is investigated to reveal the solvation effect on the performance of sodium-ion batteries in different electrolyte environment. TAPQ cycled in diglyme-based electrolyte exhibits superior electrochemical performance, but experiences a rapid capacity fading in carbonate-based electrolyte. The function of solvation effect is mainly embodied in two aspects: one is the stabilization of anion intermediate via the compatibility of electrode and electrolyte, the other is the interfacial electrochemical characteristics influenced by solvation sheath structure. By revealing the failure mechanism, this work presents an avenue for better understanding electrochemical behavior and enhancing performance from the angle of solvation effect.

18.
Acc Chem Res ; 54(3): 632-641, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33449629

RESUMEN

ConspectusIt is a permanent issue for modern society to develop high-energy-density, low-cost, and safe batteries to promote technological innovation and revolutionize the human lifestyle. However, the current popular Li-ion batteries are approaching their ceiling in energy density, and thus other battery systems with more power need to be proposed and studied to guide this revolution. Lithium-air batteries are among the candidates for next-generation batteries because of their high energy density (3500 Wh/kg). The past 20 years have witnessed rapid developments of lithium-air batteries in electrochemistry and material engineering with scientists' collaboration from all over the world. Despite these advances, the investigation on Li-air batteries is still in its infancy, and many bottleneck problems, including fundamental and application difficulties, are waiting to be resolved. For the electrolyte, it is prone to be attacked by intermediates (LiO2, O2-, 1O2, O22-) and decomposed at high voltage, accompanying side reactions that will induce cathode passivation. For the lithium anode, it can be corroded severely by H2O and the side products, thus protection methods are urgently needed. As an integrated system, the realization of high-performance Li-air batteries requires the three components to be optimized simultaneously.In this Account, we are going to summarize our progress for optimizing Li-air batteries in the past decade, including air-electrochemistry and anode optimization. Air-electrochemistry involves the interactions among electrolytes, cathodes, and air, which is a complex issue to understand. The search for stable electrolytes is first introduced because at the early age of its development, the use of incompatible Li-ion battery electrolytes leads to some misunderstandings and troubles in the advances of Li-air batteries. After finding suitable electrolytes for Li-air batteries, the fundamental research in the reaction mechanism starts to boom, and the performance has achieved great improvement. Then, air electrode engineering is introduced to give a general design principle. Examples of carbon-based cathodes and all-metal cathodes are discussed. In addition, to understand the influence of air components on Li-air batteries, the electro-activity of N2 has been tested and the role of CO2 in Li-O2/CO2 has been refreshed. Following this, the strategies for anode optimization, including constructing artificial films, introducing hydrophobic polymer electrolytes, adding electrolyte additives, and designing alloy anodes, have been discussed. Finally, we advocate researchers in this field to conduct cell level optimizations and consider their application scenarios to promote the commercialization of Li-air batteries in the near future.

19.
Adv Mater ; 32(38): e2004157, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32776397

RESUMEN

Lithium metal is the only anode material that can enable the Li-O2 battery to realize its high theoretical energy density (≈3500 Wh kg-1 ). However, the inherent uncontrolled dendrite growth and serious corrosion limitations of lithium metal anodes make it experience fast degradation and impede the practical application of Li-O2 batteries. Herein, a multifunctional complementary LiF/F-doped carbon gradient protection layer on a lithium metal anode by one-step in situ reaction of molten Li with poly(tetrafluoroethylene) (PTFE) is developed. The abundant strong polar C-F bonds in the upper carbon can not only act as Li+ capture site to pre-uniform Li+ flux but also regulate the electron configuration of LiF to make Li+ quasi-spontaneously diffuse from carbon to LiF surface, avoiding the strong Li+ -adhesion-induced Li aggregation. For LiF, it can behave as fast Li+ conductor and homogenize the nucleation sites on lithium, as well as ensure firm connection with lithium. As a result, this well-designed protection layer endows the Li metal anode with dendrite-free plating/stripping and anticorrosion behavior both in ether-based and carbonate ester-based electrolytes. Even applied protected Li anodes in Li-O2 batteries, its superiority can still be maintained, making the cell achieve stable cycling performance (180 cycles).

20.
Angew Chem Int Ed Engl ; 59(43): 19311-19319, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32692471

RESUMEN

Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA