RESUMEN
As a nondestructive means of environmental monitoring, bird feathers have been used to analyze levels of per- and polyfluoroalkyl substances (PFASs) in specific environments. In this study, feather samples from 10 waterbird species around Poyang Lake were collected, and a pretreatment method for PFASs in feathers was optimized. The results showed that a combined cleaning method using ultrapure water and n-hexane effectively removed external PFASs. Twenty-three legacy and emerging PFASs were identified in the feathers of waterbirds, of which hexafluoropropylene oxides (HFPOs), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), and sodium p-perfluorinated noneoxybenzene sulfonate (OBS) were reported for the first time, with their concentrations ranging from 0.060-2.4â¯ng·g-1 dw, 0.046-30â¯ng·g-1 dw, and lower than the method detection limit to 30â¯ng·g-1 dw, respectively. Compound- and species-specific bioaccumulation of PFASs was observed in the feathers of different waterbird species, suggesting that different PFAS types can be monitored through the selection of different species. Moreover, the concentrations of most PFCAs (except perfluorobutyric acid), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA) were significantly positively correlated with δ15N (p < 0.05), while the concentrations of HFPOs, Cl-PFESAs, and OBS had significant positive correlations with δ13C. This indicates that the bioaccumulation of legacy and emerging PFASs in waterbird feathers is affected by their trophic level, feeding habits, and foraging area.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Lagos , Bioacumulación , Plumas/química , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis , Alcanosulfonatos , China , Éteres , Éter , Fluorocarburos/análisis , Monitoreo del AmbienteRESUMEN
BACKGROUND: With the arrival of the era of large-scale production, sharing and application of data, digital use has gradually changed people's daily entertainment, consumption, social interaction, learning and other behaviors in its efficient form. This paper mainly discusses whether this fast and convenient behavior leads Chinese older adults to adopt healthier lifestyles. METHODS: Using the most recent information from the Chinese Family Panel Studies (CFPS) in 2020, this paper conducted a descriptive statistical analysis on the basic situation of digital use and lifestyles among Chinese older adults and used a structural equation model to analyse the influence of frequency and types of digital use in a variety of different aspects of the real life of Chinese older adults. RESULTS: Research revealed that the quality of life of Chinese older adults improved significantly as a result of their use of digital technology. The frequency of digital use (FDU) significantly improved Chinese older adults' diet, sleep, exercise, smoking and drinking, and relieved their depression. The types of digital use (TDU) had a significant positive correlation with the lifestyle of Chinese older adults, especially in the influence of digital entertainment (DE), digital consumption (DC) and digital social interaction (DI) on the lifestyle of Chinese older adults. CONCLUSIONS: Digital use can improve the health of Chinese older adults by promoting a healthy lifestyle through various means. The findings of this study have a substantial positive impact on bridging the digital divide that Chinese older adults face, as well as fostering the integration of digital use into their healthy lifestyles.
Asunto(s)
Tecnología Digital , Calidad de Vida , Humanos , Anciano , Estilo de Vida , Estado de Salud , China/epidemiologíaRESUMEN
Mixed legacy and emerging per- and polyfluoroalkyl substances (PFASs) are commonly found in soil and dust; however, the potential toxicity of PFAS mixtures (mPFASs) in insects is unknown. Using 16S rRNA gene sequencing and transcriptome sequencing (RNA-Seq), we evaluated the adverse effects of mPFASs on silkworms, a typical lepidopteran insect. After exposure to mPFASs, the silkworm midgut was enriched with high levels of PFASs, which induced histopathological changes. The composition of the midgut microbiota was significantly affected by mPFAS exposure, and functional predictions revealed significant disruption of some metabolic pathways. RNA-seq analysis revealed that mPFASs significantly changed the transcription profiles. Functional enrichment analysis of the differentially expressed genes also revealed that biological processes related to metabolic pathways and the digestive system were significantly affected, similar to the results of the gut microbiota analysis, suggesting that mPFAS exposure had an adverse effect on the metabolic function of silkworms and may further affect their normal growth. Finally, the significant correlation between abundance changes in the gut microbiota and metabolism/digestion-related genes further highlighted the role of the gut microbiota in mPFAS-related processes affecting the metabolic functions of silkworms. To our knowledge, this study is the first to evaluate the toxic effects of mPFASs in insects and provide basic data for further PFAS toxicity investigations in insects and comprehensive ecological risk assessments of mPFASs.
Asunto(s)
Bombyx , Fluorocarburos , Microbioma Gastrointestinal , Animales , Disbiosis , ARN Ribosómico 16S , Fluorocarburos/toxicidad , Fluorocarburos/metabolismoRESUMEN
It is crucial for the development of carbon reduction strategies to accurately examine the spatial distribution of carbon emissions. Limited by data availability and lack of industry segmentation, previous studies attempting to model spatial carbon emissions still suffer from significant uncertainty. Taking Pudong New Area as an example, with the help of multi-source data, this paper proposed a research framework for the amount calculation and spatial distribution simulation of its CO2 emissions at the scale of urban functional zones (UFZs). The methods used in this study were based on mapping relations among the locations of geographic entities and data of multiple sources, using the coefficient method recommended by the Intergovernmental Panel on Climate Change (IPCC) to calculate emissions. The results showed that the emission intensity of industrial zones and transport zones was much higher than that of other UFZs. In addition, Moran's I test indicated that there was a positive spatial autocorrelation in high emission zones, especially located in industrial zones. The spatial analysis of CO2 emissions at the UFZ scale deepened the consideration of spatial heterogeneity, which could contribute to the management of low carbon city and the optimal implementation of energy allocation.
Asunto(s)
Dióxido de Carbono , Carbono , China , Carbono/análisis , Dióxido de Carbono/análisis , Ciudades , Industrias , Desarrollo EconómicoRESUMEN
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
Asunto(s)
Luz , Zea mays , Zea mays/metabolismo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Hojas de la Planta/metabolismoRESUMEN
Urban intersections are one of the most common sources of traffic congestion. Especially for multiple intersections, an appropriate control method should be able to regulate the traffic flow within the control area. The intersection signal-timing problem is crucial for ensuring efficient traffic operations, with the key issues being the determination of a traffic model and the design of an optimization algorithm. So, an optimization method for signalized intersections integrating a multi-objective model and an NSGAIII-DAE algorithm is established in this paper. Firstly, the multi-objective model is constructed including the usual signal control delay and traffic capacity indices. In addition, the conflict delay caused by right-turning vehicles crossing straight-going non-motor vehicles is considered and combined with the proposed algorithm, enabling the traffic model to better balance the traffic efficiency of intersections without adding infrastructure. Secondly, to address the challenges of diversity and convergence faced by the classic NSGA-III algorithm in solving traffic models with high-dimensional search spaces, a denoising autoencoder (DAE) is adopted to learn the compact representation of the original high-dimensional search space. Some genetic operations are performed in the compressed space and then mapped back to the original search space through the DAE. As a result, an appropriate balance between the local and global searching in an iteration can be achieved. To validate the proposed method, numerical experiments were conducted using actual traffic data from intersections in Jinzhou, China. The numerical results show that the signal control delay and conflict delay are significantly reduced compared with the existing algorithm, and the optimal reduction is 33.7% and 31.3%, respectively. The capacity value obtained by the proposed method in this paper is lower than that of the compared algorithm, but it is also 11.5% higher than that of the current scheme in this case. The comparisons and discussions demonstrate the effectiveness of the proposed method designed for improving the efficiency of signalized intersections.
RESUMEN
As emerging alternatives to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) and sodium p-perfluorous nonenox-benzenesulfonate (OBS) were frequently detected in the four freshwater fish species collected from Poyang Lake. Median concentrations of 6:2 Cl-PFESA and OBS in fish tissues were 0.046-6.0 and 0.46-5.1 ng/g wet weight, respectively. The highest concentrations of 6:2 Cl-PFESA was found in fish livers, whereas OBS was found in the pancreas, brain, gonads, and skin. The tissue distribution pattern of 6:2 Cl-PFESA is similar to that of PFOS. The tissue/liver ratios of OBS were higher than those of PFOS, suggesting that OBS has a greater tendency to transfer from the liver to other tissues. The logarithmic bioaccumulation factors (log BAFs) of 6:2 Cl-PFESA in three carnivorous fish species were greater than 3.7, whereas those of OBS were less than 3.7, indicating that 6:2 Cl-PFESA had a strong bioaccumulation potential. Notably, sex- and tissue-specific bioaccumulation of OBS has also been observed in catfish. Most tissues (except the gonads) exhibited higher OBS concentrations in males than in females. However, no differences were found for 6:2 Cl-PFESA and PFOS. Maternal transfer efficiency of OBS was higher than that of 6:2 Cl-PFESA and PFOS in catfish (p < 0.05), indicating that OBS presents a higher risk of exposure to males and offspring through maternal offloading.
Asunto(s)
Ácidos Alcanesulfónicos , Bagres , Fluorocarburos , Animales , Femenino , Ácidos Alcanesulfónicos/análisis , Bioacumulación , China , Éteres , Fluorocarburos/análisis , Lagos , Distribución Tisular , MasculinoRESUMEN
N6-methyladenosine (m6A) is the most frequent internal modification of mRNA and lncRNA in eukaryotes. We used two high-throughput sequencing method, m6A-seq and RNA-seq to identify pivotal m6A-modified genes in cashmere fineness and fiber growth. 8062 m6A peaks were detected by m6A-seq, including 2157 upregulated and 6445 downregulated. Furthermore, by comparing m6A-modified genes of the male Liaoning Cashmere Goat (M-LCG) and female Liaoning Cashmere Goat (F-LCG) skin tissues, we get 862 differentially expressed m6A-modified genes. To identify differently expressed m6A genes associated with cashmere fineness, 11 genes were selected for validation using real time fluorescent quantitative PCR in M-LCG and F-LCG. This study provides an acadamic basis on the molecular regulation mechanism of m6A modification in cashmere growth process.
Asunto(s)
Cabras , Piel , Masculino , Femenino , Animales , Metilación , Cabras/genética , Piel/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , RNA-SeqRESUMEN
The current work focuses on the DFT calculation of the rational mechanism and catalytic activity of the gold(i)-catalyzed isotetradehydro-Diels-Alder cycloaddition of cyanamides and enamides to substituted 2,6-diaminopyridines. IPrAuCl is used as a model catalyst to catalyze cyanamide and enynamide reactants with different substituents in DCM as a research system. DFT data indicates that the catalytic cycle starts from the triple bond coordination between the catalyst's gold cation and the enamide to obtain the gold π-complex, and the cyanamide attacks the alkynyl carbon atom from different directions to generate two reaction channels of five-membered and six-membered heterocycles, respectively. The calculation results show that the 2,6-diaminopyridine compounds produced by this catalytic reaction have lower activation energy and higher reactivity, that is, the pyridine skeleton structure can be easily obtained under mild reaction conditions. At the same time, electron-withdrawing substituents in the reactants are more helpful for the reaction. In addition to being in good agreement with the experimental data, the calculated results also provide an important contribution to the further understanding of the mechanism of such reactions.
RESUMEN
AIM: The objective of this study was to evaluate the reported associations between the syndrome of inappropriate antidiuretic hormone secretion (SIADH) and a variety of proton pump inhibitors (PPI) through analysis of the reports extracted from the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: FAERS reports from January 2004 to March 2020 were used to conduct disproportionality and Bayesian analyses. The definition of SIADH relied on the preferred terms provided by the Medical Dictionary for Regulatory Activities. The time to onset, mortality, and hospitalization rates of PPI-related SIADH were also investigated. RESULTS: The study identified a total of 273 reports of PPI-associated SIADH, which appeared to influence more elderly than middle-aged patients (71.1% vs. 12.5%). Women were more affected than men (48.7% vs. 41.8%). Rabeprazole had a stronger SIADH association than other PPIs based on the highest reporting odds ratio (reporting odds ratio = 13.3, 95% confidence interval (CI) = 7.2, 24.9), proportional reporting ratio (proportional reporting ratio = 13.3, χ2 = 113.7), and empirical Bayes geometric mean (empirical Bayes geometric mean = 13.3, 95% CI = 7.9). The median time to SIADH onset was 22 (interquartile range 6-692) days after PPI administration. PPI-associated SIADH generally led to a 2.95% fatality rate and a 79.7% hospitalization rate. The highest hospitalization death rate occurred in esomeprazole (91.2%). CONCLUSION: According to our findings, more attention should be paid to SIADH within the first several months after the administration of PPIs. For women older than 65 years, dexlansoprazole may reduce the incidence of PPI-associated SIADH. Nonetheless, larger epidemiological studies are suggested to verify this conclusion.
Asunto(s)
Síndrome de Secreción Inadecuada de ADH , Sistemas de Registro de Reacción Adversa a Medicamentos , Anciano , Teorema de Bayes , Femenino , Humanos , Síndrome de Secreción Inadecuada de ADH/inducido químicamente , Síndrome de Secreción Inadecuada de ADH/epidemiología , Masculino , Persona de Mediana Edad , Farmacovigilancia , Inhibidores de la Bomba de Protones/efectos adversos , VasopresinasRESUMEN
A linalool/polycaprolactone (LL/PCL) antibacterial film was prepared by using a coaxial electrospinning process, and its physical and chemical properties were characterized. The antibacterial film was formed into an active antibacterial gasket, and its effect on salmon preservation was analyzed. The results show that the LL/PCL nanofiber membrane had a well-developed microstructure, and the fiber surface was smooth and uniform. The diameter of the fibers in the PCL membrane without the core material (linalool) was 113.92 ± 23.74 nm. In contrast, the diameter of the coaxial nanofiber membrane with linalool increased, and the diameter of the LL/PCL membranes with 20% and 40% linalool was 220.62 ± 44.01 and 232.22 ± 56.27 nm, respectively. The hydrophobicity and water vapor permeability were enhanced, whereas the tensile strength and elongation at break decreased slightly, while the thermal stability did not differ significantly with the incorporation of linalool. Analysis of the sustained release of linalool showed that the LL/PCL coaxial fiber membranes could release linalool into the reaction system for a long time. The LL/PCL nanofiber film was used to create an antibacterial active gasket for salmon preservation experiments. Sensory evaluation and analyses of the total bacterial count, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), pH, texture (hardness, elasticity, chewiness, and viscoelasticity), water distribution change, and aroma using an electronic nose were used to determine the quality of salmon. It was found that food-grade tinfoil and the PCL gasket had no significant effect on the freshness of salmon, while the active antibacterial gasket samples containing linalool could decrease the rate of decay salmon and effectively prolong the shelf-life of salmon by releasing linalool.
RESUMEN
Maize (Zea mays L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome b6f. These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φEo), probability that an electron moves beyond the primary acceptor QA- (ψo), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δRo), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φRo), and overall performance up to the PSI end electron acceptors (PItotal). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (Rd).
Asunto(s)
Complejo de Proteína del Fotosistema I , Zea mays , Clorofila/metabolismo , Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Proteómica , Zea mays/metabolismoRESUMEN
Thirty-five legacy and emerging per- and polyfluoroalkyl substances (PFAS) were analyzed in surface water and sediments collected from Poyang Lake, the largest freshwater lake in China. The Æ©PFAS concentrations ranged from 23 to 1000 ng/L in water dissolved phase, 1.3-9.8 ng/L in suspended particulate matters, and 0.26-2.9 ng/g dry weight in sediments. Short-chain and emerging PFAS were predominant in surface water and sediments, rather than legacy perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Hexafluoropropylene oxide dimer/trimer acid (HFPO-DA/TA), 6:2 and 8:2 chlorinated polyfluorinated ether sulfonic acids (6:2 and 8:2 Cl-PFESAs), 6:2 fluorotelomer sulfonate (6:2 FTS), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) were detected in all samples, indicating that these emerging PFAS have been widely produced and used in this region. The high concentrations of HFPO-DA/TA, 6:2 FTS, 6:2, 8:2 Cl-PFESAs, and OBS in sediments and their higher water-sediment distribution coefficients than those of predecessors (PFOA or PFOS) suggest that lake sediments could be an important long-term sink for these emerging alternatives. The positive matrix factorization model demonstrated that food packaging and textile treatments (50%) and fluoropolymer manufacturing (26% for alternative sources and 8.2% for legacy sources) were the two major sources of PFAS in Poyang Lake. The influx and outflux of total PFAS in Poyang Lake were 9.0 and 12.8 ton/year, respectively, and the OBS flux was estimated for the first time. The results provide insights into the environmental behavior and fate of emerging PFAS in freshwater ecosystems.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , China , Ecosistema , Monitoreo del Ambiente , Fluorocarburos/análisis , Lagos , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.
RESUMEN
Background Pharmacological inhibition of angiogenesis via the vascular endothelial growth factor pathway is an important therapeutic target that prevents tumor growth and the formation of metastases. Although vascular endothelial growth factor inhibitor (VPI) is well understood as a well-defined safety profile, few real-world studies are comparing the incidence, clinical features, and prognosis of the aneurysm and artery dissection. Methods and Results To evaluate and compare the links between different VPIs and aneurysm and artery dissection, we identified 634 reports with VPIs in the US Food and Drug Administration Adverse Event Reporting System database ranging between January 2004 to March 2020. We used the reporting odds ratio for the association between the use of VPIs and aneurysm and artery dissection. The reporting odds ratio (3.68, 95%, 2.18â6.23) shows that ramucirumab has a stronger correlation than other VPIs. The results show a significant difference in onset time (P<0.001). The median time to aneurysm and artery dissection was 79.5 (interquartile interval, 19.0-273.5) days after VPI administration. The results also show that VPI-associated aneurysm and artery dissection was reported more often in men (n=336, 59.68% versus n=227, 40.32%), and there were more cases in patients aged between 45 to 74 years than those <45 years (n=312, 68.12% versus n=18, 3.93%); patients aged ≥75 years accounted for 27.95% (n=128). Finally, the suspected drugs generally led to 19.98% deaths and 29.81% hospitalizations. Conclusions We identified signals for aneurysm and artery dissection following various VPIs in real-world practice via the Food and Drug Administration Adverse Event Reporting System, which represents the first step for continued pharmacovigilance investigation.
Asunto(s)
Aneurisma , Inhibidores de la Angiogénesis , Arterias , Factor A de Crecimiento Endotelial Vascular , Sistemas de Registro de Reacción Adversa a Medicamentos , Anciano , Aneurisma/etiología , Aneurisma/cirugía , Inhibidores de la Angiogénesis/efectos adversos , Arterias/cirugía , Disección , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiologíaRESUMEN
Protein lysine acetylation (Kac) is an important post-translational modification in both animal and plant cells. Global Kac identification has been performed at the proteomic level in various species. However, the study of Kac in oil and resource plant species is relatively limited. Soybean is a globally important oil crop and resouce plant. In the present study, lysine acetylome analysis was performed in soybean leaves with proteomics techniques. Various bioinformatics analyses were performed to illustrate the structure and function of these Kac sites and proteins. Totally, 3148 acetylation sites in 1538 proteins were detected. Motif analysis of these Kac modified peptides extracted 17 conserved motifs. These Kac modified protein showed a wide subcellular location and functional distribution. Chloroplast is the primary subcellular location and cellular component where Kac proteins were localized. Function and pathways analyses indicated a plenty of biological processes and metabolism pathways potentially be influenced by Kac modification. Ribosome activity and protein biosynthesis, carbohydrate and energy metabolism, photosynthesis and fatty acid metabolism may be regulated by Kac modification in soybean leaves. Our study suggests Kac plays an important role in soybean physiology and biology, which is an available resource and reference of Kac function and structure characterization in oil crop and resource plant, as well as in plant kingdom.
Asunto(s)
Glycine max/metabolismo , Lisina/metabolismo , Hojas de la Planta/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Acetilación , Fabaceae/metabolismo , Oryza/metabolismo , Proteoma/metabolismo , Proteómica/métodosRESUMEN
INTRODUCTION: Frailty status has been recognised as an important prognostic factor of adverse clinical outcomes in various clinical settings. Recently, the role of frailty status in adverse clinical outcomes for COVID-19-infected patients has received increasing attention with controversial results. Hence, we will conduct a comprehensive dose-response meta-analysis to quantitatively evaluate the association between frailty status and adverse clinical outcomes in patients with COVID-19. METHODS: The researchers will systematically search PubMed, EMBase, Cochrane Library, ISI Knowledge via Web of Science and MedRxiv or BioRxiv databases (from inception until December 2020) to identify all retrospective and prospective cohort studies. All-cause mortality during hospitalisation will be set as the primary outcome. Univariable or multivariable meta-regression and subgroup analyses will be conducted for the comparison between frail versus non-frail categories. Sensitivity analyses will be used to assess the robustness of our results by removing each included study one at a time to obtain and evaluate the remaining overall estimates of all-cause mortality. To conduct a dose-response meta-analysis for the potential linear or restricted cubic spline regression relationship between frailty status and all-cause mortality, studies with three or more categories will be included. ETHICS AND DISSEMINATION: In accordance with the Institutional Review Board/Independent Ethics Committee of the First Affiliated Hospital of Baotou Medical College, ethical approval is not an essential element for the systematic review protocol. This meta-analysis will be disseminated through publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42020220226.
Asunto(s)
COVID-19 , Fragilidad , Humanos , Metaanálisis como Asunto , Estudios Prospectivos , Proyectos de Investigación , Estudios Retrospectivos , SARS-CoV-2 , Revisiones Sistemáticas como AsuntoRESUMEN
Cooperative communication and resource limitation are two main characteristics of mobile ad hoc networks (MANETs). On one hand, communication among the nodes in MANETs highly depends on the cooperation among nodes because of the limited transmission range of the nodes, and multi-hop communications are needed in most cases. On the other hand, every node in MANETs has stringent resource constraints on computations, communications, memory, and energy. These two characteristics lead to the existence of selfish nodes in MANETs, which affects the network performance in various aspects. In this paper, we quantitatively investigate the impacts of node selfishness caused by energy depletion in MANETs in terms of packet loss rate, round-trip delay, and throughput. We conducted extensive measurements on a proper simulation platform incorporating an OMNeT++ and INET Framework. Our experimental results quantitatively indicate the impact of node selfishness on the network performance in MANETs. The results also imply that it is important to evaluate the impact of node selfishness by jointly considering selfish nodes' mobility models, densities, proportions, and combinations.
RESUMEN
The determination of heavy metal ions has always been a hot topic in the field of environmental analysis. In this study, a new covalent organic framework-loaded gold nanoparticle (AuCOF) nanocatalytic amplification signal strategy was developed to determine trace Co2+ in water. The COF of BtPD was synthesized from 1,3,5-benzene tricarboxaldehyde and p-phenylenediamine, and a new kind of AuBtPD nanosol was prepared by reduction of HAuCl4 to AuNPs on the BtPD carrier. It has strong catalysis of the new indicator reaction of sodium formate reducing HAuCl4 to AuNP sol with strong resonance Rayleigh scattering (RRS) at 370 nm and surface enhanced resonance Raman scattering (SERS) activity at 1614 cm-1 in the presence of a Victoria blue 4R (VB4R) molecular probe. Combining the nanocatalytic reaction to amplify the dual-scattering signals and specific aptamer (Apt) of cobalt ions, a new, fast, stable, sensitive and specific dual mode method for detecting Co2+ was established; the RRS signal I 370nm and SERS signal I 1614cm-1 show a linear relationship with the concentration of 0.033-1 nmol L-1 Co2+ and with a limit of detection (LOD) of 0.02 nmol L-1. The two methods have been applied to the determination of Co2+ in industrial wastewater, tap water and river water, and the results are satisfactory.
RESUMEN
BACKGROUND: Agrobacterium rhizogenes-mediated (ARM) transformation is a highly efficient technique for generating composite plants composed of transgenic roots and wild-type shoot, providing a powerful tool for studying root biology. The ARM transformation has been established in many plant species, including soybean. However, traditional transformation of soybean, transformation efficiency is low. Additionally, the hairy roots were induced in a medium, and then the generated composite plants were transplanted into another medium for growth. This two-step operation is not only time-consuming, but aggravates contamination risk in the study of plant-microbe interactions. RESULTS: Here, we report a one-step ARM transformation method with higher transformation efficiency for generating composite soybean plants. Both the induction of hairy roots and continuous growth of the composite plants were conducted in a single growth medium. The primary root of a 7-day-old seedling was decapitated with a slanted cut, the residual hypocotyl (maintained 0.7-1 cm apical portion) was inoculated with A. rhizogenes harboring the gene construct of interest. Subsequently, the infected seedling was planted into a pot with wet sterile vermiculite. Almost 100% of the infected seedlings could produce transgenic positive roots 16 days post-inoculation in 7 tested genotypes. Importantly, the transgenic hairy roots in each composite plant are about three times more than those of the traditional ARM transformation, indicating that the one-step method is simpler in operation and higher efficiency in transformation. The reliability of the one-step method was verified by CRISPR/Cas9 system to knockout the soybean Rfg1, which restricts nodulation in Williams 82 (Nod-) by Sinorhizobium fredii USDA193. Furthermore, we applied this method to analyze the function of Arabidopsis YAO promoter in soybean. The activity of YAO promoter was detected in whole roots and stronger in the root tips. We also extended the protocol to tomato. CONCLUSIONS: We established a one-step ARM transformation method, which is more convenient in operation and higher efficiency (almost 100%) in transformation for generating composite soybean plants. This method has been validated in promoter functional analysis and rhizobia-legume interactions. We anticipate a broad application of this method to analyze root-related events in tomato and other plant species besides soybean.