Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 353: 90-98, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452935

RESUMEN

BACKGROUND: Reversion from mild cognitive impairment (MCI) to normal cognition (NC) is not uncommon and indicates a better cognitive trajectory. This study aims to identify predictors of MCI reversion and develop a predicting model. METHOD: A total of 391 MCI subjects (mean age = 74.3 years, female = 61 %) who had baseline data of magnetic resonance imaging, clinical, and neuropsychological measurements were followed for two years. Multivariate logistic analyses were used to identify the predictors of MCI reversion after adjusting for age and sex. A stepwise backward logistic regression model was used to construct a predictive nomogram for MCI reversion. The nomogram was validated by internal bootstrapping and in an independent cohort. RESULT: In the training cohort, the 2-year reversion rate was 19.95 %. Predictors associated with reversion to NC were higher education level (p = 0.004), absence of APOE4 allele (p = 0.001), larger brain volume (p < 0.005), better neuropsychological measurements performance (p < 0.001), higher glomerular filtration rate (p = 0.035), and lower mean arterial pressure (p = 0.060). The nomogram incorporating five predictors (education, hippocampus volume, the Alzheimer's Disease Assessment Scale-Cognitive score, the Rey Auditory Verbal Learning Test-immediate score, and mean arterial pressure) achieved good C-indexes of 0.892 (95 % confidence interval [CI], 0.859-0.926) and 0.806 (95 % CI, 0.709-0.902) for the training and validation cohort. LIMITATION: Observational duration is relatively short; The predicting model warrant further validation in larger samples. CONCLUSION: This prediction model could facilitate risk stratification and early management for the MCI population.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Cognición , Imagen por Resonancia Magnética , Hipocampo/patología , Pruebas Neuropsicológicas , Enfermedad de Alzheimer/diagnóstico por imagen , Progresión de la Enfermedad
2.
Chemistry ; 30(21): e202303873, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38357809

RESUMEN

Asymmetric one-carbon homologation or ring expansion of ketones with formal insertion of carbene intermediate, is a challenging but useful strategy to construct a complex skeleton. Sc(III) and chiral ligands have been employed in this regard. However, due to flexible conformations and a variety of stereo models, the origin of stereochemistry remains ambiguous. Density functional theory (DFT) calculations were carried out to explore the interactions that control the stereoselectivity of a Sc(III)-catalyzed asymmetric homologation. The trans influence of counterions was found to affect the coordination mode of ketone to Sc(III), and consequently affect the stereoselectivity.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276744

RESUMEN

Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.

4.
J Am Chem Soc ; 146(2): 1532-1542, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174923

RESUMEN

Described here is a mild and stereoselective protocol for the synthesis of [3]dendralenes via the intermolecular dimerization of allenes. With the proper choice of a ruthenium catalyst, a range of unactivated 1,1-disubstituted allenes, without prefunctionalization in the allylic position, reacted efficiently to provide rapid access to densely substituted [3]dendralenes. An intermolecular C-C bond and three different types of C═C double bonds (di-, tri-, and tetrasubstituted) embedded in an acyclic structure were constructed with good to high E/Z stereocontrol. This is in contrast to the known catalytic protocols that focus on allenes with prefunctionalization at the allylic position and/or monosubstituted allenes, which would proceed by a different mechanism or require less stereocontrol. The silyl-substituted dendralene products are precursors of other useful dendralene molecules. Density functional theory (DFT) studies and control experiments supported a mechanism involving oxidative cyclometalation, ß-H elimination (the rate-determining step), and reductive elimination.

5.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009187

RESUMEN

Changing the intrinsic rate of metabolic heat production is the main adaptive strategy for small birds to cope with different ambient temperatures. In this study, we tested the hypothesis that the small passerine the white-shouldered starling (Sturnus sinensis) can modulate basal metabolism under temperature acclimation by changing the morphological, physiological and biochemical state of its tissues and organs. We measured the effects of temperature on body mass, basal metabolic rate (BMR), wet mass of various internal organs, state 4 respiration (S4R) and cytochrome c oxidase (CCO) activity in the pectoral muscle and organs, metabolites in the pectoral muscle, energy intake, histological dynamics and the activity of duodenal digestive enzymes. Warm acclimation decreased BMR to a greater extent than cold acclimation. At the organ level, birds in the cold-acclimated group had significantly heavier intestines but significantly lighter pectoral muscles. At the cellular level, birds in the cold-acclimated group showed significantly higher S4R in the liver and heart and CCO activity in the liver and kidney at both the mass-specific and whole-organ levels. A metabolomic analysis of the pectoral tissue revealed significantly higher lipid decomposition, amino acid degradation, ATP hydrolysis, and GTP and biotin synthesis in cold-acclimated birds. Acclimation to cold significantly increased the gross energy intake (GEI), feces energy (FE) and digestive energy intake (DEI) but significantly decreased the digestive efficiency of these birds. Furthermore, cold-acclimated birds had a higher maltase activity and longer villi in the duodenum. Taken together, these data show that white-shouldered starlings exhibit high phenotypic flexibility in metabolic adjustments and digestive function under temperature acclimation, consistent with the notion that small birds cope with the energy challenges presented by a cold environment by modulating tissue function in a way that would affect BMR.


Asunto(s)
Estorninos , Animales , Temperatura , Aclimatación/fisiología , Metabolismo Basal/fisiología , Frío , Metabolismo Energético
6.
Angew Chem Int Ed Engl ; 62(47): e202313091, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37819054

RESUMEN

An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.

7.
J Mol Model ; 29(9): 273, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542668

RESUMEN

CONTEXT: Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. METHODS: All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.

8.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420580

RESUMEN

Graph convolutional networks are widely used in skeleton-based action recognition because of their good fitting ability to non-Euclidean data. While conventional multi-scale temporal convolution uses several fixed-size convolution kernels or dilation rates at each layer of the network, we argue that different layers and datasets require different receptive fields. We use multi-scale adaptive convolution kernels and dilation rates to optimize traditional multi-scale temporal convolution with a simple and effective self attention mechanism, allowing different network layers to adaptively select convolution kernels of different sizes and dilation rates instead of being fixed and unchanged. Besides, the effective receptive field of the simple residual connection is not large, and there is a great deal of redundancy in the deep residual network, which will lead to the loss of context when aggregating spatio-temporal information. This article introduces a feature fusion mechanism that replaces the residual connection between initial features and temporal module outputs, effectively solving the problems of context aggregation and initial feature fusion. We propose a multi-modality adaptive feature fusion framework (MMAFF) to simultaneously increase the receptive field in both spatial and temporal dimensions. Concretely, we input the features extracted by the spatial module into the adaptive temporal fusion module to simultaneously extract multi-scale skeleton features in both spatial and temporal parts. In addition, based on the current multi-stream approach, we use the limb stream to uniformly process correlated data from multiple modalities. Extensive experiments show that our model obtains competitive results with state-of-the-art methods on the NTU-RGB+D 60 and NTU-RGB+D 120 datasets.


Asunto(s)
Sistema Musculoesquelético , Esqueleto , Reconocimiento en Psicología , Algoritmos , Extremidades
9.
J Environ Manage ; 343: 118210, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37229865

RESUMEN

Developing a high-performance method that can effectively control pollution caused by low concentrations of antibiotics is urgently needed. Herein, a novel three-dimensional PPy/Zn3In2S6 nanoflower composites were prepared for the comprehensive treatment of low-concentration tetracycline (Tc) hydrochloride in wastewater based on the adsorption/photocatalysis of Zn3In2S6 and the conductivity of PPy. In this preparation method, adsorption enrichment and photocatalytic regeneration were conducted in two steps, eliminating the dilution and dispersion effects of aqueous solvents on photocatalytic species and antibiotics. Results showed that Zn3In2S6 could effectively adsorb 87.85% of Tc at pH of 4.5 and photocatalytically degrade Tc at pH of 10.5. Although the adsorption capacity of Zn3In2S6 was slightly reduced after being combined with PPy, its photocatalytic efficiency was substantially enhanced. Specifically, 0.5%PPy/Zn3In2S6 could degrade 99.92% of the surface-enriched Tc in 1 h and induce the regeneration of the adsorption sites. Furthermore, the adsorption capacity remained above 85% even after recycling PPy/Zn3In2S6 ten times. The photocatalytic degradation mechanism analysis revealed that the enrichment of Tc on 0.5%PPy/Zn3In2S6 negatively impacts the photocatalytic efficiency, while •O2- and •OH radicals were the main oxidative species that played an important role in the photoregeneration process.


Asunto(s)
Tetraciclina , Agua , Adsorción , Catálisis , Antibacterianos
10.
J Am Chem Soc ; 145(22): 12284-12292, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216226

RESUMEN

Functionalizing molecules through the selective cleavage of carbon-carbon bonds is an attractive approach in synthetic chemistry. Despite recent advances in both transition-metal catalysis and radical chemistry, the selective cleavage of inert Csp3-Csp3 bonds in hydrocarbon feedstocks remains challenging. Examples reported in the literature typically involve substrates containing redox functional groups or highly strained molecules. In this article, we present a straightforward protocol for the cleavage and functionalization of Csp3-Csp3 bonds in alkylbenzenes using photoredox catalysis. Our method employs two distinct bond scission pathways. For substrates with tertiary benzylic substituents, a carbocation-coupled electron transfer mechanism is prevalent. For substrates with primary or secondary benzylic substituents, a triple single-electron oxidation cascade is applicable. Our strategy offers a practical means of cleaving inert Csp3-Csp3 bonds in molecules without any heteroatoms, resulting in primary, secondary, tertiary, and benzylic radical species.

11.
Polymers (Basel) ; 15(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111981

RESUMEN

The practical problem of free formaldehyde pollution in the plywood industry is that polyethylene films have been shown to be able to replace some urea-formaldehyde resins for wood adhesives. To broaden the variety of thermoplastic plywood, reduce the hot-press temperature, and save energy consumption, an ethylene-vinyl acetate (EVA) film was selected as a wood adhesive to manufacture a novel wood-plastic composite plywood via hot-press and secondary press processes. The effects of the hot-press and secondary press processes at different levels on the physical-mechanical properties of EVA plywood (tensile shear strength, 24 h water absorption, and immersion peel performance) were evaluated. The results showed that the properties of the resulting plywood using the EVA film as an adhesive could meet the type III plywood standard. The optimum hot-press time was 1 min/mm, the hot-press temperature was 110-120 °C, the hot-press pressure was 1 MPa, the dosage film was 163 g/m2, the secondary press time was 5 min, the secondary press pressure was 0.5 MPa, and the secondary press temperature was 25 °C. EVA plywood can be used in indoor environments.

12.
J Nanobiotechnology ; 21(1): 144, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122015

RESUMEN

Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Nanotecnología , Técnicas Biosensibles/métodos
13.
Chem Commun (Camb) ; 59(26): 3898-3901, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917473

RESUMEN

A near-infrared (NIR) organic photothermal agent (PTA) to inhibit three types of heat shock proteins (HSPs) was synthesized, which could be activated under hypoxic conditions for low-temperature photothermal therapy (PTT) of cancer.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia , Proteínas de Choque Térmico , Terapia Fototérmica , Temperatura , Neoplasias/metabolismo , Hipoxia/terapia , Línea Celular Tumoral
14.
Mol Cancer ; 22(1): 25, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739413

RESUMEN

Current methods for the early detection and minimal residual disease (MRD) monitoring of urothelial carcinoma (UC) are invasive and/or possess suboptimal sensitivity. We developed an efficient workflow named urine tumor DNA multidimensional bioinformatic predictor (utLIFE). Using UC-specific mutations and large copy number variations, the utLIFE-UC model was developed on a bladder cancer cohort (n = 150) and validated in The Cancer Genome Atlas (TCGA) bladder cancer cohort (n = 674) and an upper tract urothelial carcinoma (UTUC) cohort (n = 22). The utLIFE-UC model could discriminate 92.8% of UCs with 96.0% specificity and was robustly validated in the BLCA_TCGA and UTUC cohorts. Furthermore, compared to cytology, utLIFE-UC improved the sensitivity of bladder cancer detection (p < 0.01). In the MRD cohort, utLIFE-UC could distinguish 100% of patients with residual disease, showing superior sensitivity compared to cytology (p < 0.01) and fluorescence in situ hybridization (FISH, p < 0.05). This study shows that utLIFE-UC can be used to detect UC with high sensitivity and specificity in patients with early-stage cancer or MRD. The utLIFE-UC is a cost-effective, rapid, high-throughput, noninvasive, and promising approach that may reduce the burden of cystoscopy and blind surgery.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/diagnóstico , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Hibridación Fluorescente in Situ/métodos , Variaciones en el Número de Copia de ADN , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , ADN , Sensibilidad y Especificidad
15.
J Am Chem Soc ; 145(4): 2305-2314, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657379

RESUMEN

While 1,1-diboryl (gem-diboryl) compounds are valuable synthetic building blocks, currently, related studies have mainly focused on those 1,1-diboryl alkanes without a hetero functional group in the α-position. gem-Diboryl compounds with an α-hetero substituent, though highly versatile, have been limitedly accessible and thus rarely utilized. Herein, we have developed the first α-dihydroboration of heteroalkynes leading to the efficient construction of gem-diboryl, hetero-, and tetra-substituted carbon centers. This straightforward, practical, mild, and atom-economic reaction is an attractive complement to the conventional multistep synthetic strategy relying on deprotonation of gem-diborylmethane by a strong base. Specifically, [Ir(cod)(OMe)]2 was found to be uniquely effective for this process of thioalkynes, leading to excellent α-regioselectivity when delivering the two boryl groups, which is remarkable in view of the many competitive paths including monohydroboration, 1,2-dihydroboration, dehydrodiboration, triboration, tetraboration, etc. Control experiments combined with DFT calculations suggested that this process involves two sequential hydroboration events. The second hydroboration requires a higher energy barrier due to severe steric repulsion in generating the highly congested α-sulfenyl gem-diboryl carbon center, a structural motif that was almost unknown before.

16.
Angew Chem Int Ed Engl ; 62(9): e202216356, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36576426

RESUMEN

Bisborylalkanes play important roles in organic synthesis as versatile bifunctional reagents. The two boron moieties in these compounds can be selectively converted into other functional groups through cross-coupling, oxidation or radical reactions. Thus, the development of efficient methods for synthesizing bisborylalkanes is highly demanded. Herein we report a new strategy to access bisborylalkanes through the reaction of N-trisylhydrazones with diboronate, in which the bis(boryl) methane is transformed into 1,2-bis(boronates) via formal carbene insertion. Since the N-trisylhydrazones can be readily derived from the corresponding aldehydes, this strategy represents a practical synthesis of 1,2-diboronates with broad substrate scope. Mechanistic studies reveal an unusual neighboring group effect of 1,1-bis(boronates), which accounts for the observed regioselectivity when unsymmetric 1,1-diboronates are applied.

17.
Front Vet Sci ; 10: 1334434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274664

RESUMEN

Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.

18.
Chem Commun (Camb) ; 59(2): 235-238, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484474

RESUMEN

A heat shock protein-inhibiting photothermal agent (PTA) with endoplasmic reticulum targeting was synthesized to reduce the thermal resistance and enhance the effect of mild-temperature photothermal therapy (PTT).


Asunto(s)
Nanopartículas , Terapia Fototérmica , Fototerapia , Temperatura , Proteínas de Choque Térmico , Línea Celular Tumoral
19.
Front Plant Sci ; 13: 946475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212322

RESUMEN

Climate change and global warming pose a great threat to plant growth and development as well as crop productivity. To better study the genome-wide gene expression under heat, we performed a time-course (0.5 to 24 h) transcriptome analysis in the leaf and root of 40-day-old pepper plants under 40°C as well as in control plants. Clustering analysis (K-means) showed that the expression of 29,249 genes can be grouped into 12 clusters with distinct expression dynamics under stress. Gene ontology (GO) enrichment analysis and transcription factor (TF) identification were performed on the clusters with certain expression patterns. Comparative analysis between the heat-treated and control plants also identified differentially expressed genes (DEGs), which showed the largest degree of change at 24 h. Interestingly, more DEGs were identified in the root than in the leaf. Moreover, we analyzed the gene expression of 25 heat shock factor genes (HSFs) in pepper after heat stress, identified five of these HSFs that responded to heat stress, and characterized the role of these genes in heat-tolerant (17CL30) and heat-susceptible (05S180) pepper lines. The findings of this study improve our understanding of the genome-wide heat stress response in pepper.

20.
Stem Cells ; 40(12): 1122-1133, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36063391

RESUMEN

Acute lung injury (ALI) accompanied with systemic inflammatory response is an important complication after cardiopulmonary bypass (CPB). Pyroptosis, which is induced by the secretion of inflammatory factors, has been implicated in ALI. However, recent studies have suggested that bone marrow mesenchymal stem cell-derived exosomes (BMMSC-Exo) can ameliorate ALI, but the mechanism is poorly understood. Therefore, we aim to examine the effects of BMMSC-Exo in CPB-induced ALI, and its underlying mechanism. CPB rat models (male Sprague-Dawley rats) were administered BMMSC-Exo intravenously before induction of ALI. Lung tissue, bronchoalveolar lavage fluid (BALF), and alveolar macrophage (AM) were collected after the treatments for further analysis, and rat AM NR8383 cells were used for in vitro study. HE staining was performed to detect macrophage infiltration. Western blot was used to detect related proteins expression. And ELISA assay was performed to investigate secretion of inflammatory factors. These results showed that BMMSC-Exo treatment ameliorated macrophage infiltration and oxidative stress, and downregulated expression of pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and GSDMD-N, in the lung tissue and AM, as well as decreased the secretion of IL-18 and IL-1ß in BALF. Moreover, BMMSC-Exo activated YAP/ß-catenin signaling pathway. Overall, these findings of this study indicated that BMMSC-Exo suppressed CPB-induced pyroptosis in ALI by activating YAP/ß-catenin axis, which could be a novel strategy for lung protection during CPB.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Células Madre Mesenquimatosas , Ratas , Masculino , Animales , Puente Cardiopulmonar/efectos adversos , Ratas Sprague-Dawley , Regulación hacia Abajo , Piroptosis , Exosomas/metabolismo , beta Catenina/metabolismo , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA