Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Br J Ophthalmol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033014

RESUMEN

AIMS: To develop and externally test deep learning (DL) models for assessing the image quality of three-dimensional (3D) macular scans from Cirrus and Spectralis optical coherence tomography devices. METHODS: We retrospectively collected two data sets including 2277 Cirrus 3D scans and 1557 Spectralis 3D scans, respectively, for training (70%), fine-tuning (10%) and internal validation (20%) from electronic medical and research records at The Chinese University of Hong Kong Eye Centre and the Hong Kong Eye Hospital. Scans with various eye diseases (eg, diabetic macular oedema, age-related macular degeneration, polypoidal choroidal vasculopathy and pathological myopia), and scans of normal eyes from adults and children were included. Two graders labelled each 3D scan as gradable or ungradable, according to standardised criteria. We used a 3D version of the residual network (ResNet)-18 for Cirrus 3D scans and a multiple-instance learning pipline with ResNet-18 for Spectralis 3D scans. Two deep learning (DL) models were further tested via three unseen Cirrus data sets from Singapore and five unseen Spectralis data sets from India, Australia and Hong Kong, respectively. RESULTS: In the internal validation, the models achieved the area under curves (AUCs) of 0.930 (0.885-0.976) and 0.906 (0.863-0.948) for assessing the Cirrus 3D scans and Spectralis 3D scans, respectively. In the external testing, the models showed robust performance with AUCs ranging from 0.832 (0.730-0.934) to 0.930 (0.906-0.953) and 0.891 (0.836-0.945) to 0.962 (0.918-1.000), respectively. CONCLUSIONS: Our models could be used for filtering out ungradable 3D scans and further incorporated with a disease-detection DL model, allowing a fully automated eye disease detection workflow.

2.
Bot Stud ; 65(1): 16, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967679

RESUMEN

BACKGROUND: Astragaloside IV is a main medicinal active ingredient in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao, which is also the key biomarker of A. membranaceus quality. Ethylene has been well-documented to involve in secondary metabolites biosynthesis in plants. Nevertheless, how ethylene regulates astragaloside IV biosynthesis in A. membranaceus is still unclear. Therefore, in the present study different dosages and time-dependent exogenous application of ethephon (Eth) were employed to analyze astragaloside IV accumulation and its biosynthesis genes expression level in hydroponically A. membranaceus. RESULTS: Exogenous 200 µmol·L- 1Eth supply is most significantly increased astragaloside IV contents in A. membranaceus when compared with non-Eth supply. After 12 h 200 µmol·L- 1 Eth treatment, the astragaloside IV contents reaching the highest content at 3 d Eth treatment(P ≤ 0.05). Moreover, After Eth treatment, all detected key genes involved in astragaloside IV synthesis were significant decrease at 3rd day(P ≤ 0.05). However, SE displayed a significant increase at the 3rd day under Eth treatment(P ≤ 0.05). Under Eth treatment, the expression level of FPS, HMGR, IDI, SS, and CYP93E3 exhibited significant negative correlations with astragaloside IV content, while expression level of SE displayed a significant positive correlation. CONCLUSIONS: These findings suggest that exogenous Eth treatment can influence the synthesis of astragaloside IV by regulating the expression of FPS, HMGR, IDI, SS, CYP93E3 and SE. This study provides a theoretical basis for utilizing molecular strategies to enhance the quality of A. membranaceus.

3.
Ecotoxicol Environ Saf ; 280: 116541, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848637

RESUMEN

Although accumulating evidence indicates that endangered animals suffer from plastic pollution, this has been largely overlooked. Here, we explored the bacteria and eukaryotes living in the plastics gathered from the natural habitat of the highly endangered crocodile lizard. The results demonstrated that the bacterial and eukaryotic communities on plastics formed a unique ecosystem that exhibited lower diversity than those in the surrounding water and soil. However, microbes displayed a more complex and stable network on plastic than that in water or soil, implying unique mechanisms of stabilization. These mechanisms enhanced their resilience and contributed to the provision of stable ecological services. Eukaryotes formed a simpler and smaller network than bacteria, indicating different survival strategies. The bacteria residing on the plastics played a significant role in carbon transformation and sequestration, which likely impacted carbon cycling in the habitat. Furthermore, microbial exchange between plastics and the crocodile lizard was observed, suggesting that plastisphere serves as a mobile gene bank for the exchange of information, including potentially harmful substances. Overall, microbes on plastic appear to significantly impact the crocodile lizard and its natural habitat via various pathways. These results provided novel insights into risks evaluation of plastic pollution and valuable guidance for government efforts in plastic pollutant control in nature reserves.


Asunto(s)
Bacterias , Ecosistema , Especies en Peligro de Extinción , Lagartos , Plásticos , Animales , Monitoreo del Ambiente , Eucariontes , Fenotipo , Microbiología del Suelo
4.
Heliyon ; 10(11): e31404, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832261

RESUMEN

Background: The accurate preoperative localization of pulmonary nodules is essential for a successful video-assisted thoracic surgery (VATS). The aim of this research was to clarify the efficacy and safety of CT-guided localization of pulmonary nodules by mixture of methylene blue and medical adhesive. Methods: Between January 2020 and January 2021, 103 subjects who have received the CT-guidance pulmonary nodules localization operation were included and retrospectively analyzed. The data on efficiency and complications of preoperative localization using medical adhesives mixed with methylene blue mixture were collected and analyzed. Results: 103 patients with 111 localized pulmonary nodules were included, 95 of whom had one nodule and 8 of whom had two nodules. The nodule localization success rate reaches as high as 100 %. The mean diameter of pulmonary nodules was 9.50 ± 3.67 mm. The mean distance of pulmonary nodule and pleural surface was 19.95 ± 14.92 mm. The mean depth of localized adhesive in the lung parenchyma was 18.99 ± 11.62 mm, and the mean time required for localization was 16.98 ± 5.72 min. The average time from the nodule localization to VATS surgery was 16.97 ± 7.34 h. The common complications of localization were minor pulmonary hemorrhage (9.74 %) and mild pneumothorax (15.53 %). Besides, pulmonary hemorrhage was related with depths of medical adhesives and nodules in lung parenchyma (p = 0.018 and 0.002, respectively). Conclusion: Medical adhesive mixed with methylene blue is safe and effective in pulmonary nodules localization for VATS, and surgeons have flexibility in scheduling the procedure.

5.
Front Pharmacol ; 15: 1394941, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903998

RESUMEN

Context: It is very necessary to delay ovarian aging and prevent age-related health problems. The active ingredient in Honghua Xiaoyao tablet (HHXYT) has the effects of anti-oxidation, anti-inflammation, immune regulation and so on. Objective: To explore the effect and mechanism of Honghua Xiaoyao tablet on aging model mice. Materials and methods: The aging model was established by intraperitoneal injection of D-galactose in model mice. The mice in the HHXYT-L,M,H group were given 0.3 g/kg, 0.6 g/kg and 1.2 g/kg Honghua Xiaoyao tablet suspension respectively, and the HHXYT-M + E2 group was given 0.6 g/kg HHXYT +0.13 mg/kg estradiol valerate for 30 days. In this study, ELISA, HE, Western blot, IH and TUNEL were used. Results: HHXYT + E2 can improve the gonadal index, estrous cycle of aging mice. In HHXYT-M + E2 group, the level of FSH and LH decreased, while E2 and AMH increased significantly. The number of growing follicles in HHXYT-M + E2 group increased, which was better than that of HHXYT alone. Western blot results showed that HHXYT-M + E2 group decreased the expression of Bax, cleaved-Parp, cleaved-Casp-3 and CytC molecules and increased the expression of Bcl-2 in ovarian tissue. FSHR expression decreased in model group and increased in HHXYT group. TUNEL staining showed that the number of apoptotic cells in HHXYT group was reduced, and the HHXYT-M + E2 group was the most significantly. Discussion and conclusion: HHXYT can improve the level of sex hormones and increase the number of growing follicles in aging mice. HHXYT-M + E2 group has the best effect, and its mechanism may be related to reducing ovarian granulosa cell apoptosis.

6.
Sci Rep ; 14(1): 14723, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926392

RESUMEN

Invasive candidiasis (IC) is a notable healthcare-associated fungal infection, characterized by high morbidity, mortality, and substantial treatment costs. Candida albicans emerges as a principal pathogen in this context. Recent academic advancements have shed light on the critical role of exosomes in key biological processes, such as immune responses and antigen presentation. This burgeoning body of research underscores the potential of exosomes in the realm of medical diagnostics and therapeutics, particularly in relation to fungal infections like IC. The exploration of exosomal functions in the pathophysiology of IC not only enhances our understanding of the disease but also opens new avenues for innovative therapeutic interventions. In this investigation, we focus on exosomes (Exos) secreted by macrophages, both uninfected and those infected with C. albicans. Our objective is to extract and analyze these exosomes, delving into the nuances of their protein compositions and subgroups. To achieve this, we employ an innovative technique known as Proximity Barcoding Assay (PBA). This methodology is pivotal in our quest to identify novel biological targets, which could significantly enhance the diagnostic and therapeutic approaches for C. albicans infection. The comparative analysis of exosomal contents from these two distinct cellular states promises to yield insightful data, potentially leading to breakthroughs in understanding and treating this invasive fungal infection. In our study, we analyzed differentially expressed proteins in exosomes from macrophages and C. albicans -infected macrophages, focusing on proteins such as ACE2, CD36, CAV1, LAMP2, CD27, and MPO. We also examined exosome subpopulations, finding a dominant expression of MPO in the most prevalent subgroup, and a distinct expression of CD36 in cluster14. These findings are crucial for understanding the host response to C. albicans and may inform targeted diagnostic and therapeutic approaches. Our study leads us to infer that MPO and CD36 proteins may play roles in the immune escape mechanisms of C. albicans. Additionally, the CD36 exosome subpopulations, identified through our analysis, could serve as potential biomarkers and therapeutic targets for C. albicans infection. This insight opens new avenues for understanding the infection's pathology and developing targeted treatments.


Asunto(s)
Biomarcadores , Antígenos CD36 , Candida albicans , Candidiasis , Exosomas , Macrófagos , Exosomas/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Antígenos CD36/metabolismo , Candidiasis/diagnóstico , Candidiasis/microbiología , Candidiasis/metabolismo , Candidiasis/inmunología , Humanos , Animales , Ratones
7.
Noise Health ; 26(121): 107-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904809

RESUMEN

OBJECTIVE: To study the value of ward noise management combined with meditation training in stroke rehabilitation patients. METHODS: According to the retrospective analysis method, 150 stroke patients hospitalized in the rehabilitation center of a Tangshan Workers' Hospital from July 2020 to December 2023 were selected as study objects. They were divided into three groups, namely the control group (routine rehabilitation care, n = 50), observation group A (meditation training, n = 50), and observation group B (meditation training and ward noise management, n = 50) according to whether they received ward noise management and meditation training. The general demographic data, Fatigue Severity Scale (FSS), Pittsburgh Sleep Quality Index (PSQI), and the Short Form 36 (SF-36) were collected. Chi-square test and analysis of variance were used to analyse the data. RESULTS: The baseline data of the patients in each group were not statistically significant (P > 0.05). Before treatment, no difference in the FSS, PSQI, SF-36 scores and environmental noise level between the groups (P > 0.05) was observed. After management, the scores of SF-36 in observation group B were higher than those in the control group and observation group A (P < 0.05) except for somatic pain. Other indicators in observation group B were lower than those in the control and observation group A (P < 0.001). CONCLUSIONS: Ward noise management and meditation training can effectively reduce patients' fatigue, significantly reducing ambient noise levels, promoting the improvement of life quality, and improving sleep quality.


Asunto(s)
Meditación , Ruido , Rehabilitación de Accidente Cerebrovascular , Humanos , Meditación/métodos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Rehabilitación de Accidente Cerebrovascular/métodos , Fatiga/etiología , Fatiga/terapia , Adulto , Anciano , Calidad de Vida , Calidad del Sueño
8.
J Clin Ultrasound ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741262

RESUMEN

Clear cell papillary renal cell carcinoma (CCPRCC) is a newly classified renal cell carcinoma with a low degree of malignancy. Its imaging features have not been studied deeply. Therefore, we reviewed the imaging features of CCPRCC. Solid CCPRCC shows high echo or isoecho mass on conventional ultrasound. Contrast enhanced ultrasound shows "fast forward and slow backward, uneven high enhancement". Computed tomography shows high enhancement and maximum enhancement in the cortical-medullary phase. Magnetic resonance imaging shows slightly low T1WI and high T2WI. This article aims to improve the understanding of CCPRCC by clinical radiologists and promote the accurate.

9.
Trials ; 25(1): 306, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715042

RESUMEN

BACKGROUND: Premature infants commonly encounter difficulties with oral feeding, a complication that extends hospital stays, affects infants' quality of life, and imposes substantial burdens on families and society. Enhancing preterm infants' oral feeding skills and facilitating their transition from parenteral or nasal feeding to full oral feeding pose challenges for neonatal intensive care unit (NICU) healthcare professionals. Research indicates that oral motor interventions (OMIs) can enhance preterm infants' oral feeding capabilities and expedite the transition from feeding initiation to full oral feeding. Nonetheless, the most suitable timing for commencing these interventions remains uncertain. METHODS: This is a single-blind, randomized controlled trial. Preterm with a gestational age between 29+0 to 34+6 weeks will be eligible for the study. These infants will be randomized and allocated to one of two groups, both of which will receive the OMIs. The intervention commences once the infant begins milk intake during the early OMIs. Additionally, in the late OMIs group, the intervention will initiate 48 h after discontinuing nasal continuous positive airway pressure. DISCUSSION: OMIs encompass non-nutritive sucking and artificial oral stimulation techniques. These techniques target the lips, jaw, muscles, or tongue of premature infants, aiming to facilitate the shift from tube feeding to oral feeding. The primary objective is to determine the ideal intervention timing that fosters the development of oral feeding skills and ensures a seamless transition from parenteral or nasal feeding to full oral feeding among preterm infants. Furthermore, this study might yield insights into the long-term effects of OMIs on the growth and neurodevelopmental outcomes of preterm infants. Such insights could bear substantial significance for the quality of survival among preterm infants and the societal burden imposed by preterm birth. TRIAL REGISTRATION: chictr.org.cn ChiCTR2300076721. Registered on October 17, 2023.


Asunto(s)
Recien Nacido Prematuro , Ensayos Clínicos Controlados Aleatorios como Asunto , Conducta en la Lactancia , Humanos , Recién Nacido , Método Simple Ciego , Factores de Tiempo , Edad Gestacional , Resultado del Tratamiento , Unidades de Cuidado Intensivo Neonatal , Conducta Alimentaria , Femenino , Desarrollo Infantil
10.
Sci Total Environ ; 937: 173377, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38796025

RESUMEN

Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema
11.
J Mol Med (Berl) ; 102(7): 875-886, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695882

RESUMEN

Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.


Asunto(s)
Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Macrófagos , Ratones Endogámicos C57BL , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Colitis/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Masculino , Colon/patología , Colon/metabolismo , Colon/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos
12.
J Med Genet ; 61(8): 750-758, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38816193

RESUMEN

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.


Asunto(s)
Muerte Celular , Ciliopatías , Ratones Noqueados , Animales , Humanos , Ratones , Muerte Celular/genética , División Celular/genética , Cilios/patología , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/patología , Modelos Animales de Enfermedad , Hígado/patología , Hígado/metabolismo , Transducción de Señal/genética
13.
Mater Today Bio ; 26: 101067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706730

RESUMEN

The blood-brain Barrier (BBB), combined with immune clearance, contributes to the low efficacy of drug delivery and suboptimal treatment outcomes in glioma. Here, we propose a novel approach that combines the self-assembly of mouse bone marrow-derived macrophage membrane with a targeted positive charge polymer (An-PEI), along with low-frequency ultrasound (LFU) irradiation, to achieve efficient and safe therapy for glioma. Our findings demonstrate the efficacy of a charge-induced self-assembly strategy, resulting in a stable co-delivery nanosystem with a high drug loading efficiency of 44.2 %. Moreover, this structure triggers a significant release of temozolomide in the acidic environment of the tumor microenvironment. Additionally, the macrophage membrane coating expresses Spyproteins, which increase the amount of An-BMP-TMZ that can evade the immune system by 40 %, while LFU irradiation treatment facilitates the opening of the BBB, allowing for enormously increased entry of An-BMP-TMZ (approximately 400 %) into the brain. Furthermore, after crossing the BBB, the Angiopep-2 peptide-modified An-BMP-TMZ exhibits the ability to selectively target glioma cells. These advantages result in an obvious tumor inhibition effect in animal experiments and significantly improve the survival of glioma-bearing mice. These results suggest that combining the macrophage membrane-coated drug delivery system with LFU irradiation offers a feasible approach for the accurate, efficient and safe treatment of brain disease.

14.
ACS Nano ; 18(21): 13726-13737, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742941

RESUMEN

Human vision excels in perceiving nighttime low illumination due to biological feedforward adaptation. Replicating this ability in biomimetic vision using solid-state devices has been highly sought after. However, emulating scotopic adaptation, entailing a confluence of efficient photoexcitation and dynamic carrier modulation, presents formidable challenges. Here, we demonstrate a low-power and bionic scotopic adaptation transistor by coupling a light-absorption layer and an electron-trapping layer at the bottom of the semiconducting channel, enabling simultaneous achievement of efficient generation of free photocarriers and adaptive carrier accumulation within a single device. This innovation empowers our transistor to exhibit sensitivity-potentiated characteristics after adaptation, detecting scotopic-level illumination (0.001 lx) with exceptional photosensitivity up to 103 at low voltages below 2 V. Moreover, we have successfully replicated diverse scotopic vision functions, encompassing time-dependent visual threshold enhancement, light intensity-dependent adaptation index, imaging contrast enhancement for nighttime low illumination imaging, opening an opportunity for artificial night vision.

15.
Endocr Pract ; 30(7): 624-630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679386

RESUMEN

OBJECTIVE: The association between obesity, metabolic dysregulation, and the aggressive pathological traits of papillary thyroid carcinoma (PTC) continues to be a contentious issue. To date, no investigations have examined the impact of metabolic status on the malignant pathological features of PTC in relation to obesity. METHODS: This research involved 855 adult patients with PTC from Shandong Provincial Hospital, classified into 4 groups based on metabolic and obesity status: metabolically healthy nonobese, metabolically unhealthy nonobese (MUNO), metabolically healthy obese, and metabolically unhealthy obese. We employed logistic regression to investigate the relationship between these metabolic obesity phenotypes and PTC's pathological characteristics. Mediation analysis was also performed to determine metabolic abnormalities' mediating role in the nexus between obesity and these characteristics. RESULTS: Relative to metabolically healthy nonobese individuals, the metabolically unhealthy obese group was significantly associated with an elevated risk of larger tumor sizes and a greater number of tumor foci in PTC. Mediation analysis indicated that obesity directly influences tumor size, whereas its effect on tumor multifocality is mediated through metabolic dysfunctions. Specifically, high-density lipoprotein cholesterol levels were notably associated with tumor multifocality within obese subjects, serving as a mediator in obesity's impact on this trait. CONCLUSION: The concurrent presence of obesity and metabolic dysregulation is often connected to more aggressive pathological features in PTC. The mediation analysis suggests obesity directly affects tumor size and indirectly influences tumor multifocality via low high-density lipoprotein cholesterol levels.


Asunto(s)
Obesidad , Fenotipo , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Masculino , Femenino , Persona de Mediana Edad , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Adulto , Obesidad/metabolismo , Obesidad/complicaciones , Obesidad/patología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/epidemiología , Anciano
16.
PLoS One ; 19(4): e0300538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558076

RESUMEN

PURPOSE: The cryopreservation process damages oocytes and impairs development potential. As a potent antioxidant, C-phycocyanin (PC) regulates reproductive performance. However, its beneficial effects on vitrified human oocytes remain unknown. METHODS: In this study, human GV-stage oocytes obtained from controlled ovarian hyperstimulation (COH) cycles were randomly allocated to three groups: fresh oocyte without freezing (F group), vitrification in medium supplemented with PC (P group), and vitrification in medium without PC as control group (C group). After warming, viable oocytes underwent in vitro maturation. RESULTS: Our results showed that 3 µg/mL PC treatment increased the oocyte maturation rate after cryopreservation. We also found that PC treatment maintains the regular morphological features of oocytes. After PC treatment, confocal fluorescence staining showed a significant increase in the mitochondrial membrane potential of the vitrified oocytes, along with a notable decrease in intracellular reactive oxygen species and the early apoptosis rate. Finally, after in vitro maturation and parthenogenetic activation, vitrified oocytes had a higher potential for cleavage and blastocyst formation after PC treatment. CONCLUSION: Our results suggest that PC improves the developmental potential of cryopreserved human GV-stage oocytes by attenuating oxidative stress and early apoptosis and increasing the mitochondrial membrane potential.


Asunto(s)
Criopreservación , Ficocianina , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ficocianina/farmacología , Criopreservación/métodos , Oocitos , Vitrificación
17.
Adv Mater ; 36(25): e2401822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555558

RESUMEN

Advanced organic electronic technologies have put forward a pressing demand for cost-effective and high-throughput fabrication of organic single-crystal films (OSCFs). However, solution-printed OSCFs are typically plagued by the existence of abundant structural defects, which pose a formidable challenge to achieving large-scale and high-performance organic electronics. Here, it is elucidated that these structural defects are mainly originated from printing flow-induced anisotropic growth, an important factor that is overlooked for too long. In light of this, a surfactant-additive printing method is proposed to effectively overcome the anisotropic growth, enabling the deposition of uniform OSCFs over the wafer scale at a high speed of 1.2 mm s-1 at room temperature. The resulting OSCF exhibits appealing performance with a high average mobility up to 10.7 cm2 V-1 s-1, which is one of the highest values for flexible organic field-effect transistor arrays. Moreover, large-scale OSCF-based flexible logic circuits, which can be bent without degradation to a radius as small as 4.0 mm and over 1000 cycles are realized. The work provides profound insights into breaking the limitation of flow-induced anisotropic growth and opens new avenues for printing large-scale organic single-crystal electronics.

18.
Electrophoresis ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38549469

RESUMEN

The genetic identification of skeletal remains from Chinese People's Volunteers (CPVs) of the Korean War has been challenging because of the degraded DNA samples and the lack of living close relatives. This study established a workflow for identifying CPVs by combining Y-chromosome short tandem repeats (Y-STRs), mitochondrial DNA (mtDNA) hypervariable regions I and II, autosomal STRs (aSTRs), and identity-informative SNPs (iiSNPs). A total of 20 skeletal remains of CPVs and 46 samples from their alleged relatives were collected. The success rate of DNA extraction from human remains was 100%. Based on Y-STRs, six remains shared the same male lineages with their alleged relatives. Meanwhile, mtDNA genotyping supports two remains sharing the same maternal lineages with their alleged relatives. Likelihood ratios (LRs) were further obtained from 27 aSTRs and 94 iiSNPs or 1936 iiSNPs to confirm their relationship. All joint pedigree LRs were >100. Finally, six remains were successfully identified. This pilot study for the systematic genetic identification of CPVs from the Korean War can be applied for the large-scale identification of CPVs in the future.

19.
J Int Med Res ; 52(3): 3000605241234558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38518198

RESUMEN

OBJECTIVE: To investigate the roles and underlying mechanisms of vascular endothelial growth factor receptor-3 (VEGFR-3) in gastric cancer (GC). METHODS: VEGFR-3 gene expression profiles in human gastric adenocarcinoma (GAC) tissues were analysed using The Cancer Genome Atlas database. Human GC cell lines and were used for in vitro studies. Mouse models of GC and distant metastasis were used for in vivo studies. Silencing of VEGFR-3 gene expression was achieved using small interfering RNA. RESULTS: VEGFR-3 gene expression was significantly elevated in GAC tissues and GC cells. Higher VEGFR-3 expression was positively correlated with more advanced stages and a greater number of metastatic lymph nodes. In vitro studies in GC cells showed that knockdown of VEGFR-3 gene expression significantly suppressed cell proliferation and migration, but promoted apoptosis. In vivo investigations revealed that silencing of VEGFR-3 gene expression exhibited significant inhibition on tumour growth and metastasis. Further mechanistic studies showed that VEGFR-3 exerted its pathological roles by affecting the key molecules in the apoptotic and epithelial-mesenchymal transition pathways. CONCLUSION: The molecular pathways associated with VEGFR-3-mediated pathological effects could be targets in the development of novel approaches for the diagnosis, prognosis and treatment of GC.


Asunto(s)
Neoplasias Gástricas , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Pronóstico , Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/farmacología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
20.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456504

RESUMEN

SARS-CoV-2 spike-based vaccines are used to control the COVID-19 pandemic. However, emerging variants have become resistant to antibody neutralization and further mutations may lead to full resistance. We tested whether T cells alone could provide protection without antibodies. We designed a T cell-based vaccine in which SARS-CoV-2 spike sequences were rearranged and attached to ubiquitin. Immunization of mice with the vaccine induced no specific antibodies, but strong specific T cell responses. We challenged mice with SARS-CoV-2 wild-type strain or an Omicron variant after the immunization and monitored survival or viral titers in the lungs. The mice were significantly protected against death and weight loss caused by the SARS-CoV-2 wild-type strain, and the viral titers in the lungs of mice challenged with the SARS-CoV-2 wild-type strain or the Omicron variant were significantly reduced. Importantly, depletion of CD4+ or CD8+ T cells led to significant loss of the protection. Our analyses of spike protein sequences of the variants indicated that fewer than one-third presented by dominant HLA alleles were mutated and that most of the mutated epitopes were in the subunit 1 region. As the subunit 2 region is conservative, the vaccines targeting spike protein are expected to protect against future variants due to the T cell responses.


Asunto(s)
COVID-19 , Vacunas , Animales , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunas contra la COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...