RESUMEN
The methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promote the solubility and stability of the MTC subunit B, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behaviour, exhibit reduced m6A levels. Reciprocally, MTC can recruit the microprocessor to the MIRNA loci, prompting co-transcriptional cleavage of primary miRNA substrates. Additionally, primary miRNA substrates carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain the microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
RESUMEN
RNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs. Brr2a binds to pri-miRNAs in vivo and in vitro. Furthermore, Brr2a hydrolyses ATP and the activity can be significantly enhanced by pri-miRNAs. Consequently, Brr2a unwinds pri-miRNAs in vitro. Moreover, Brr2a variants with compromised ATPase or RH activity are incapable of unwinding pri-miRNA, and their transgenic plants fail to restore miRNA levels in brr2a-2. Importantly, most of tested pri-miRNAs display distinct RSS, rendering them unsuitable for efficient processing in brr2a mutants vs Col-0. Collectively, this study reveals that Brr2a plays a non-canonical role in miRNA production beyond splicing regulation.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , ARN Helicasas , MicroARNs/genética , MicroARNs/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Helicasas/metabolismo , ARN Helicasas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN de Planta/metabolismo , ARN de Planta/genética , Conformación de Ácido NucleicoRESUMEN
Methyltransferase complex (MTC) deposits N 6-adenosine (m 6 A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m 6 A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m 6 A modifications at their single-stranded basal regions are enriched by m 6 A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
RESUMEN
MicroRNAs (miRNAs) are produced from highly structured primary transcripts (pri-miRNAs) and regulate numerous biological processes in eukaryotes. Due to the extreme heterogeneity of these structures, the initial processing sites of plant pri-miRNAs and the structural rules that determine their processing have been predicted for many miRNAs but remain elusive for others. Here we used semi-active DCL1 mutants and advanced degradome-sequencing strategies to accurately identify the initial processing sites for 147 of 326 previously annotated Arabidopsis miRNAs and to illustrate their associated pri-miRNA cleavage patterns. Elucidating the in vivo RNA secondary structures of 73 pri-miRNAs revealed that about 95% of them differ from in silico predictions, and that the revised structures offer clearer interpretation of the processing sites and patterns. Finally, DCL1 partners Serrate and HYL1 could synergistically and independently impact processing patterns and in vivo RNA secondary structures of pri-miRNAs. Together, our work sheds light on the precise processing mechanisms of plant pri-miRNAs.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , ARN de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS: Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS: We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.
Asunto(s)
Arabidopsis , Exorribonucleasas , Animales , Humanos , Regiones no Traducidas 3' , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica , Mamíferos/genéticaRESUMEN
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Plantas/genética , Plantas/metabolismo , Silenciador del Gen , Conformación ProteicaRESUMEN
The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Geminiviridae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Geminiviridae/genética , Histonas/metabolismo , Replicación del ADN , Reparación del ADN/genética , Metiltransferasas/metabolismoRESUMEN
U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.
Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , ARN Mensajero/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma/genética , ARN/genética , ARN Protozoario/genética , ARN Protozoario/metabolismoRESUMEN
Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrínsecamente Desordenadas , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Procesamiento Postranscripcional del ARN , MicroARNs/metabolismo , Ribonucleasa III/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
RNA helicases (RHs) are a family of ubiquitous enzymes that alter RNA structures and remodel ribonucleoprotein complexes typically using energy from the hydrolysis of ATP. RHs are involved in various aspects of RNA processing and metabolism, exemplified by transcriptional regulation, pre-mRNA splicing, miRNA biogenesis, liquid-liquid phase separation, and rRNA biogenesis, among other molecular processes. Through these mechanisms, RHs contribute to vegetative and reproductive growth, as well as abiotic and biotic stress responses throughout the life cycle in plants. In this review, we systematically characterize RH-featured domains and signature motifs in Arabidopsis. We also summarize the functions and mechanisms of RHs in various biological processes in plants with a focus on DEAD-box and DEAH-box RNA helicases, aiming to present the latest understanding of RHs in plant biology.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Helicasas DEAD-box/genética , Plantas/genética , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Empalme del ARNRESUMEN
Cytokine storm and inflammatory cytokine release syndrome are often found to be associated with severe instances of the 2019 coronavirus disease (COVID-19). However, factors that contribute to the development of the COVID-19-associated cytokine storm and intensify the hyperinflammatory response are not well known. Here, we integratively analyzed scRNAseq data of 37,607 immune cells of eight different cell types from four studies involving COVID-19 patients in either moderate or severe conditions. Our analysis showed that pyroptosis-a lytic, inflammatory type of programmed cell death-may play a critical role in the SARS-CoV-2-induced cytokine storm. The expression of the key markers of pyroptosis, such as pro-inflammatory cytokine genes IL1B and IL18, is significantly higher in moderate and severe COVID-19 patients than in healthy controls. The pattern is more pronounced in macrophages and neutrophils than in adaptive immune cells such as T cells and B cells. Furthermore, the lack of interferon-gamma (IFN-γ) and overexpression of ninjurin 1 (NINJ1) in macrophages may exacerbate the systemic inflammation, as shown in severe COVID-19 patients. Finally, we developed a scoring metric to quantitatively assess single cell's pyroptotic state and demonstrated the use of this pyroptosis signature score to scRNAseq data. Taken together, our study underscores the importance of the pyroptosis pathway and highlights its clinical relevance, suggesting that pyroptosis is a cellular process that can be a potential target for the treatment of COVID-19 associated diseases.
RESUMEN
Phosphorylation can quickly switch on/off protein functions. Here, we reported pre-mRNA processing 4 kinase A (PRP4KA), and its paralogs interact with Serrate (SE), a key factor in RNA processing. PRP4KA phosphorylates at least five residues of SE in vitro and in vivo. Hypophosphorylated, but not hyperphosphorylated, SE variants could readily rescue se phenotypes in vivo. Moreover, hypophosphorylated SE variants had stronger binding affinity to microprocessor component HYL1 and were more resistant to degradation by 20S proteasome than hyperphosphorylated counterparts. Knockdown of the kinases enhanced the accumulation of hypophosphorylated SE. However, the excessive SE interfered with the assembly and function of SE-scaffolded macromolecule complexes, causing the se-like defects in the mutant and wild-type backgrounds. Thus, phosphorylation of SE via PRP4KA can quickly clear accumulated SE to secure its proper amount. This study provides new insight into how protein phosphorylation regulates miRNA metabolism through controlling homeostasis of SE accumulation in plants.
RESUMEN
Trajectory inference (TI) or pseudotime analysis has dramatically extended the analytical framework of single-cell RNA-seq data, allowing regulatory genes contributing to cell differentiation and those involved in various dynamic cellular processes to be identified. However, most TI analysis procedures deal with individual genes independently while overlooking the regulatory relations between genes. Integrating information from gene regulatory networks (GRNs) at different pseudotime points may lead to more interpretable TI results. To this end, we introduce scInTime-an unsupervised machine learning framework coupling inferred trajectory with single-cell GRNs (scGRNs) to identify master regulatory genes. We validated the performance of our method by analyzing multiple scRNA-seq data sets. In each of the cases, top-ranking genes predicted by scInTime supported their functional relevance with corresponding signaling pathways, in line with the results of available functional studies. Overall results demonstrated that scInTime is a powerful tool to exploit pseudotime-series scGRNs, allowing for a clear interpretation of TI results toward more significant biological insights.
Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Diferenciación Celular/genética , Biología Computacional/métodosRESUMEN
Posttranscriptional gene silencing (PTGS) is a regulatory mechanism to suppress undesired transcripts. Here, we identified Flowering locus VE (FVE), a well-known epigenetic component, as a new player in cytoplasmic PTGS. Loss-of-function fve mutations substantially reduced the accumulation of transgene-derived small interfering RNAs (siRNAs). FVE interacts with suppressor of gene silencing 3 (SGS3), a master component in PTGS. FVE promotes SGS3 homodimerization that is essential for its function. FVE can bind to single-stranded RNA and double-stranded RNA (dsRNA) with moderate affinities, while its truncated form FVE-8 has a significantly increased binding affinity to dsRNA. These affinities affect the association and channeling of SGS3-RNA to downstream dsRNA binding protein 4 (DRB4)/Dicer-like protein 2/4 (DCL2/4) complexes. Hence, FVE, but not FVE-8, biochemically enhances the DRB4/DCL2/4 activity in vitro. We surmise that FVE promotes production of transgene-derived siRNAs through concertedly tuning SGS3-DRB4/DCL2/4 functions. Thus, this study revealed a noncanonical role of FVE in PTGS.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , TransgenesRESUMEN
The majority of cellular proteins are degraded by the 26S proteasome in eukaryotes. However, intrinsically disordered proteins (IDPs), which contain large portions of unstructured regions and are inherently unstable, are degraded via the ubiquitin-independent 20S proteasome. Emerging evidence indicates that plant IDP homeostasis may also be controlled by the 20S proteasome. Relatively little is known about the specific functions of the 20S proteasome and the regulatory mechanisms of IDP degradation in plants compared to other species because there is a lack of systematic protocols for in vitro assembly of this complex to perform in vitro degradation assays. Here, we present a detailed protocol of in vitro reconstitution assay of the 20S proteasome in Arabidopsis by modifying previously reported methods. The main strategy to obtain the 20S core proteasome here is to strip away the 19S regulatory subunits from the 26S proteasome. The protocol has two major parts: 1) Affinity purification of 20S proteasomes from stable transgenic lines expressing epitope-tagged PAG1, an essential component of the 20S proteasome (Procedures A-D) and 2) an in vitro 20S proteasome degradation assay (Procedure E). We anticipate that these protocols will provide simple and effective approaches to study in vitro degradation by the 20S proteasome and advance the study of protein metabolism in plants.
RESUMEN
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Emparejamiento Base , Biología , Conformación de Ácido Nucleico , ARN/metabolismo , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismoRESUMEN
RNA silencing plays a critical role in diverse biological processes in plants including growth, development, and responses to abiotic and biotic stresses. RNA silencing is guided by small non-coding RNAs (sRNAs) with the length of 21-24 nucleotides (nt) that are loaded into Argonaute (AGO) to repress expression of target loci and transcripts through transcriptional or posttranscriptional gene silencing mechanisms. Identification and quantitative characterization of sRNAs are crucial steps toward appreciation of their functions in biology. Here, we developed a step-by-step protocol to precisely illustrate the process of cloning of sRNA libraries and correspondingly computational analysis of the recovered sRNAs. This protocol can be used in all kinds of organisms, including Arabidopsis, and is compatible with various high-throughput sequence technologies such as Illumina Hiseq. Thus, we wish that this protocol represents an accurate way to identify and quantify sRNAs in vivo.