Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; PP2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042554

RESUMEN

Aiming at high precision control for a class of hysteretic nonlinear systems, a new hysteresis direct inverse compensator-based adaptive output feedback control scheme is designed in this article. First, a novel long short-term memory neural network (LSTMNN)-based hysteresis inverse compensator is established to compensate the asymmetric hysteresis nonlinearity, where the LSTMNN is used as the prediction mechanism for model operator weights, rather than the overall mapping of hysteresis input and output. Second, by designing the modified high-gain K -Filter states observer and the error transformed function, the unmeasurable states are estimated with arbitrarily small estimation error and the prespecified tracking performance is achieved. Lastly, the biconical dielectric elastomer actuator (DEA) motion platform is constructed. Then, the effectiveness of the proposed LSTMNN-based hysteresis inverse compensator and control scheme are verified on the experimental platform. The experimental results illustrate the effectiveness and advantages of proposed control scheme.

2.
J Infect Dis ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669226

RESUMEN

BACKGROUND: The role of Gasdermin D (GSDMD) in bloodstream infection (BSI) diagnosis is unknown. METHODS: Serum GSDMD levels were measured in BSI patients. Endothelial cells and PBMCs were isolated, infected with bacteria/fungi, and intracellular/extracellular GSDMD concentrations were measured. An animal model was established to investigate the association between serum GSDMD levels and BSI incidence/progression. RESULTS: ROC curve analysis indicated that GSDMD could be a potential early diagnostic biomarker for BSI (AUC = 0.9885). Combining GSDMD with procalcitonin (PCT) improved the differential diagnosis of Gram-positive and Gram-negative bacteria (AUC = 0.6699, 66.15% specificity), and early diagnosis of Gram-positive bacteria (98.46% sensitivity), while PCT was not significantly elevated. The combined GSDMD and G-test had higher sensitivity (AUC = 0.7174) for differential diagnosis of bacterial and fungal infections, and early detection of fungal infections (98.44% sensitivity). In vitro and in vivo experiments confirmed that GSDMD levels increased significantly within 2 hours, peaked at 16 hours, and exhibited a time-dependent upward trend. CONCLUSIONS: Serum GSDMD, alone or combined with other biomarkers, has potential for early diagnosis and differential diagnosis of BSI caused by various pathogens. This finding offers a new strategy for early detection and treatment of BSI.

3.
Materials (Basel) ; 16(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138680

RESUMEN

Understanding the impact of irradiation and temperature on the mechanical properties of GaN single crystals holds significant relevance for rational designs and applications of GaN-based transistors, lasers, and sensors. This study systematically investigates the influence of C-ion irradiation and temperature on pop-in events, hardness, Young's modulus, and fracture behavior of GaN single crystals through nanoindentation experiments. In comparison with unirradiated GaN samples, the pop-in phenomenon for ion-irradiated GaN samples is associated with a larger critical indentation load, which decreases with increasing temperature. Both unirradiated and ion-irradiated GaN samples exhibit a decline in hardness with increasing indentation depth, while Young's moduli do not exhibit a clear size effect. In addition, intrinsic hardness displays an inverse relationship with temperature, and ion-irradiated GaN single crystals exhibit greater intrinsic hardness than their unirradiated counterparts. Our analysis further underscores the significance of Peierls stress during indentation, with this stress decreasing as temperature rises. Examinations of optical micrographs of indentation-induced fractures demonstrate an irradiation embrittlement effect. This work provides valuable insights into the mechanical behavior of GaN single crystals under varying irradiation and temperature conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...