Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39460700

RESUMEN

Photodetectors based on advanced materials with a broad spectral photoresponse, high sensitivity, huge integration ability, room-temperature operation, and stable environmental stability are highly desired for diversified applications of imaging, sensing, and communication. Herein, a high-performance ultra-broadband photodetector based on an ultrathin two-dimensional (2D) Fe3O4 nanoflake heterostructure with high sensitivity was designed. The photodetector response light was from visible 405 nm to long-wave infrared (LWIR) 10.6 µm in ambient air. The competitive performances, including a high photoresponsivity (R) of 182.8 A W-1, fast speed with the rise time τr = 8.8 µs, and decay time τd = 4.1 µs, were demonstrated in the visible range. Notably, the device exhibits an excellent uncooled LWIR detection ability, with a high R of 1.4 A W-1 realized at a 1.5 V bias. In the full spectral range, the noise equivalent power is lower than 0.79 pW Hz-1/2, and specific detectivity (D*) is higher than 4.9 × 108 cm Hz1/2 W-1 in ambient air. This work provides alternative ultrathin 2D materials for future infrared optoelectronic devices.

2.
Sci China Life Sci ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39400871

RESUMEN

Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.

4.
Inorg Chem ; 63(38): 17828-17835, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39258888

RESUMEN

The development of materials with superior thermal insulation and flame retardancy is critical for industrial applications and daily life. Metal-organic framework (MOF)@poly(vinyl alcohol) (PVA) (MOF@PVA) aerogel composites have demonstrated remarkable thermal insulation and flame retardancy properties. In this work, MIL-53(Al) was directly mixed with PVA and formed by freeze-drying, and the influence of the pore structure on the thermal insulation and flame retardancy properties of the materials was investigated. The incorporated MIL-53(Al) nanoparticles introduced abundant micro- and mesopores, enhancing the complexity of the pore structure and improving the thermal insulation and flame retardancy properties of the aerogels. The directionally freeze-cast aerogel achieved a thermal conductivity of 0.040 W·mK-1, and maintained excellent thermal insulation ability even at 220 °C. Furthermore, the aerogel exhibited nonflammable and self-extinguishing characteristics. This environmentally friendly manufacturing method provides new ideas for the design of MOF-based composites, thereby expanding their application areas.

5.
Ecotoxicol Environ Saf ; 283: 116951, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213752

RESUMEN

Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging environmental pollutant that can accumulate in air and surface water. Currently, it has been widely used in fluoropolymer industry, which could cause serious environmental pollution. Due to the high bioaccumulation, the accumulation of pollutants may have an adverse effect on the normal physiological function of the kidneys. However, the toxic effects of HFPO-TA on the kidney are unknown. In this study, we investigated the toxic effects of HFPO-TA exposure on the rat kidney and its mechanism of action. Male SD rats were divided into 4 groups: control group (Ctrl group), L group (0.125 mg/kg/d), M group (0.5 mg/kg/d) and H group (2 mg/kg/d). After 14 consecutive days of gavage, periodic acid­silver methenamine (PASM) and hematoxylin-eosin (HE) staining were used to examine the structure of the kidneys. We also used transcriptome sequencing (RNA-seq) to identify differentially expressed genes (DEGs) in the testes of rats in both the control and high dose groups. Besides, expression of key proteins was analyzed by immunohistochemistry. The results indicated that HFPO-TA can lead to injured renal capsule, change glomerular shape and have a significant impact on the protein expression levels of AQP2, p-AQP2 and PPARα. Additionally, the level of total cholesterol (TC) was obviously decreased after HFPO-TA exposure. RNA-seq analysis showed that HFPO-TA primarily affected peroxisome proliferator-activated receptor (PPAR) signaling pathway that is associated with lipid metabolism and cyclic adenosine monophosphate (cAMP) signaling pathway. In summary, exposure to HFPO-TA can lead to kidney damage and lipid metabolism disorders.


Asunto(s)
Riñón , Metabolismo de los Lípidos , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Metabolismo de los Lípidos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología
6.
Sci Rep ; 14(1): 19808, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191904

RESUMEN

With the surge in Xinjiang jujube production, there has been a concurrent increase in storage losses, posing an ongoing challenge for farmers to preserve the freshness of the jujubes. To tackle this issue, a novel storage and freshness control system for jujubes, integrating Internet of Things technology, has been developed. The control system is centered around a programmable logic controller (PLC) and utilizes an HMI as the interface for human-computer interaction. It is structured with distinct layers, including equipment, transportation, and application layers. By integrating with the Internet of Things cloud platform, data transmission between the device layer and the cloud server is ensured through the use of the TCP/IP protocol over a 4G network. A mobile app enables remote control functionality for monitoring and managing the storage and preservation environment. Experimental results demonstrate the system's stable performance, enabling remote monitoring and convenient operation by management personnel during the jujube storage and preservation process. This contributes to enhancing automation levels in jujube storage, extending its storage cycle while maintaining quality standards, thus providing valuable insights into intelligent fruit and vegetable storage practices in Xinjiang.

7.
ACS Appl Mater Interfaces ; 16(28): 36892-36900, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38963902

RESUMEN

Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.

8.
Chin Herb Med ; 16(3): 313-326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072206

RESUMEN

Raspberries are used for both food and medicine, but it has not yet attracted widespread attention. In this paper, the chemical constituen of the original plant raspberry. R. chingii is one of the new "Zhe Bawei" medicinal materials selected in 2017. "Zhe Bawei" refers to eight kinds of genuine medicinal materials in Zhejiang Province. The chemical constituents, pharmacological effects, processing, and application of Rubus chingii Hu were reviewed to provide a reference for its further development. Relevant literature in recent years was collected in databases such as China Knowledge Network, Web of Science, Elsevier, PubMed, and X-Mol, using "raspberry", "Rubus chingii", "traditional use", "chemical composition", "pharmacology", etc. as keywords individually or in combination. The summary of pharmacological activities shows that the relationship between the pharmacological activities of raspberry is still not deep enough. More in-depth research should be carried out in this direction to explore the mechanism of action of its active ingredients and provide effective reference for the further development of the raspberry industry. In the future, with the participation of more researchers, it is expected to develop innovative drugs based on raspberry for the treatment of diseases.

9.
Nat Plants ; 10(8): 1201-1214, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38997433

RESUMEN

Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.


Asunto(s)
Adenosina , Oryza , Proteómica , Oryza/genética , Oryza/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteoma/metabolismo , Proteoma/genética , Espectrometría de Masas , Metilación , Arabidopsis/genética , Arabidopsis/metabolismo
10.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894445

RESUMEN

The detection of seismic activity precursors as part of an alarm system will provide opportunities for minimization of the social and economic impact caused by earthquakes. It has long been envisaged, and a growing body of empirical evidence suggests that the Earth's electromagnetic field could contain precursors to seismic events. The ability to capture and monitor electromagnetic field activity has increased in the past years as more sensors and methodologies emerge. Missions such as Swarm have enabled researchers to access near-continuous observations of electromagnetic activity at second intervals, allowing for more detailed studies on weather and earthquakes. In this paper, we present an approach designed to detect anomalies in electromagnetic field data from Swarm satellites. This works towards developing a continuous and effective monitoring system of seismic activities based on SWARM measurements. We develop an enhanced form of a probabilistic model based on the Martingale theories that allow for testing the null hypothesis to indicate abnormal changes in electromagnetic field activity. We evaluate this enhanced approach in two experiments. Firstly, we perform a quantitative comparison on well-understood and popular benchmark datasets alongside the conventional approach. We find that the enhanced version produces more accurate anomaly detection overall. Secondly, we use three case studies of seismic activity (namely, earthquakes in Mexico, Greece, and Croatia) to assess our approach and the results show that our method can detect anomalous phenomena in the electromagnetic data.

11.
Behav Sci (Basel) ; 14(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785843

RESUMEN

In the aftermath of the COVID-19 pandemic, numerous studies have indicated that individuals are confronting a diminished sense of control. Compensatory control theory suggests that individuals strive to mitigate this loss by modifying their behavior. The present study aims to investigate the relationship between self-control and compensatory control change during the COVID-19 pandemic, as well as the mediating effects of openness and the personal need for structure. Participants completed an online questionnaire consisting of Personal Need for Structure Scale, Self-Control Scale, Openness Scale and Compensatory Control Change Scale. The results showed that the compensatory control change increased after the outbreak. Moreover, a serial mediation was found: openness and the personal need for structure partially mediated the relationship between self-control and compensatory control change. The results indicate that the COVID-19 pandemic has led to an increase in compensatory control behaviors, especially among those with pronounced self-control. High self-control individuals are found to exhibit greater openness, reducing their personal need for structure, in effect enhancing their compensatory control change. These findings highlight the critical role of self-control in sustaining a sense of control, which is vital for understanding psychological health management in the context of public health events.

12.
Polymers (Basel) ; 16(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38611211

RESUMEN

This research aimed to provide an understanding of the selection and safe application of pipeline liner materials for hydrogen transport by examining the permeation properties and mechanisms of hydrogen within polymers commonly used for this purpose, such as high-density polyethylene (HDPE) and ethylene-vinyl alcohol copolymer (EVOH), through molecular simulation. The study was carried out within defined operational parameters of temperature (ranging from room temperature to 80 °C) and pressure (from 2.5 to 10 MPa) that are pertinent to hydrogen pipeline infrastructures. The results reveal that with an increase in temperature from 30 °C to 80 °C, the solubility, diffusion, and permeability coefficients of hydrogen in HDPE increase by 18.7%, 92.9%, and 129.0%, respectively. Similarly, in EVOH, these coefficients experience increments of 15.9%, 81.6%, and 112.7%. Conversely, pressure variations have a negligible effect on permeability in both polymers. HDPE exhibits significantly higher hydrogen permeability compared to EVOH. The unique chain segment configuration of EVOH leads to the formation of robust hydrogen bonds among the hydroxyl groups, thereby impeding the permeation of hydrogen. The process by which hydrogen is adsorbed in polymers involves aggregation at low potential energy levels. During diffusion, the hydrogen molecule primarily vibrates within a limited range, with intermittent occurrences of significant hole-to-hole transitions over larger distances. Hydrogen exhibits a stronger interaction with HDPE compared to EVOH, leading to a higher number of adsorption sites and increased hydrogen adsorption capacity in HDPE. Hydrogen molecules move more actively in HDPE than in EVOH, exhibiting greater hole amplitude and more holes in transition during the diffusion process.

13.
Food Chem Toxicol ; 188: 114632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583503

RESUMEN

PFOA is one of the most representative compounds in the family of perfluorinated organic compounds. Due to its varying toxicity, alternatives to PFOA are beginning to emerge. HFPO-TA is an alternative for PFOA. It is currently unclear whether HFPO-TA affects glucose and lipid metabolism. In this study, rats were used as an animal model to investigate the effects of HFPO-TA on liver glucose and lipid metabolism. We found that HFPO-TA can affect glucose tolerance. Through omics analysis and molecular detection, it was found that HFPO-TA mainly affects the PPAR signaling pathway in the liver of rats, inhibiting liver glycolysis while promoting glucose production. HFPO-TA not only promotes the synthesis of fatty acids in the liver, but also promotes the breakdown of fatty acids, which ultimately leads to the disruption of hepatic glucose and lipid metabolism. The effects of HFPO-TA on metabolism are discussed in this paper to provide a reference for the risk assessment of this PFOA substitute.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Hígado , Metaboloma , Receptores Activados del Proliferador del Peroxisoma , Transducción de Señal , Transcriptoma , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Transcriptoma/efectos de los fármacos , Glucosa/metabolismo , Metaboloma/efectos de los fármacos , Ratas Sprague-Dawley , Fluorocarburos
14.
Heliyon ; 10(5): e26965, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38562495

RESUMEN

This paper introduces a novel, Simple-based Dynamic Decentralized Community Detection Algorithm (S-DCDA) for Socially Aware Networks. This algorithm aims to address the resource-intensive nature, instabilities and inaccuracies of traditional distributed community detection algorithms. The dynamics of decentralization is evident in the threefold nature of the algorithm: (i) each node of the community is the core of the entire network or community for a certain period of time dependent on their need, (ii) nodes are not centralized around themselves, requiring the consent of the other node to join a community, and (iii) Communities start from a single node to form an initial scale community, the number of nodes and the relationship among them are constantly changing. The algorithm requires low processor performance and memory capacity size of each node, to a certain extent, effectively improve the accuracy and stability of community detection and maintenance. Experimental results demonstrate that in comparison to classical and classical-based improved community detection algorithms, S-DCDA yields superior detection results.

15.
Nanoscale ; 16(19): 9617-9624, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38683134

RESUMEN

The synthesis of anti-reflective (AR) films has been increasingly focused on environmental friendliness and cost efficiency in order to realize green and sustainable development. Herein, a novel strategy for preparing a nanoporous SiO2 AR film with high transmittance by a sol-gel process is proposed based on a sodium silicate aqueous solution. Sodium ions in the as-prepared SiO2 AR film can be effectively removed by a facile washing process, and thus its refractive index can be regulated. Moreover, the pH value of the sol has a huge effect on the structure and properties of the SiO2 AR film. As a result, the AR film exhibited a high transmittance increase of 4.10% at 550 nm and an average transmittance increase by 3.51% in the wavelength range of 380-1100 nm compared with blank glass. In addition, the obtained water-based SiO2 AR film exhibited hydrophilicity and the water contact angle (WCA) can be regulated from 61° to 8.4°. When the AR film was applied to the upper surface of perovskite solar cells, the photoelectric conversion efficiency (PCE) revealed an improvement of 1.44% compared with the PCE of perovskite solar cells without the AR film. Therefore, this work can provide a facile and effective method to prepare water-based antireflective films with high transmittance for solar cells.

16.
Cancer Discov ; 14(8): 1547-1565, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563585

RESUMEN

Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase, mediated by Zinc finger E-box binding homeobox 1. PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine (cCr) leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment. Significance: Glioblastoma (GBM) exhibits an adaptable metabolism crucial for survival and therapy resistance. We demonstrate that GBM stem cells modify their epigenetics by producing phosphocreatine (PCr), which prevents bromodomain containing protein 2 (BRD2) degradation and promotes accurate chromosome segregation. Disrupting PCr biosynthesis impedes tumor growth and improves the efficacy of BRD2 inhibitors in mouse GBM models.


Asunto(s)
Epigénesis Genética , Glioblastoma , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Animales , Ratones , Factores de Transcripción/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Proteínas que Contienen Bromodominio
17.
Behav Sci (Basel) ; 14(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38540465

RESUMEN

Focus back effort, concentration effort, and focus back state are factors associated with mind wandering. Focus back effort, proposed in alignment with the definition of focus back state, has been previously regarded as one manifestation of concentration effort. The primary goals of the current study are to explore the relationship between concentration effort, focus back effort, focus back state, and mind wandering. To shed light on the issue, we assessed the level of each cognitive measure in a single task. The findings revealed significant correlations between concentration effort, focus back effort, focus back state, and mind wandering. Mediation analysis suggested that focus back effort played a mediating role in the relationship between concentration effort and focus back state. Additionally, we observed that these measures independently influenced task performance through their impact on mind wandering. Our results provide potential avenues for interventions aimed at addressing individuals' mind wandering and enhancing task performance.

18.
Int J Biol Macromol ; 266(Pt 1): 131164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547940

RESUMEN

The biological potency of pectin is intricately intertwined with its intricate molecular architecture. The fine structure of pectin is influenced by the extraction method, while the specific impact of these methods on the fine structure and the affected attributes thereof remains enigmatic. This study delves into the profound analysis of eight distinct extraction methods influence on the structure and biological activity of citrus peel pectin. The findings demonstrate that citric acid ultrasound-assisted microwave extraction yields pectin (PectinCA-US/MV) with higher viscosity and a dense, rigid chain. Pectin extracted with acetic acid ultrasound (PectinAA-US) and citric acid ultrasound (PectinCA-US) exhibits elevated galacturonic acid (GalA) levels and reduced D-galactose (Gal) content, enhancing antioxidant activity. Eight pectin-chitosan (CS) hydrogels, especially PectinCA-US/MV-CS, demonstrate commendable thermal stability, rheological properties, self-healing capability, and swelling behavior. This study characterizes citrus peel pectin properties from different extraction methods, laying a foundation for its application in food, pharmaceuticals, and industry.


Asunto(s)
Antioxidantes , Citrus , Ácidos Hexurónicos , Microondas , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Pectinas/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Citrus/química , Viscosidad , Hidrogeles/química , Ácido Cítrico/química , Quitosano/química , Reología , Ondas Ultrasónicas
19.
Front Pharmacol ; 15: 1348360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476325

RESUMEN

Background: Cardiogenic shock (CS) is the primary cause of death in patients suffering acute myocardial infarction. As an emerging and efficacious therapeutic approach, Chinese herbal injections (CHIs) are gaining significant popularity in China. However, the optimal CHIs for treating CS remain uncertain. Method: We searched eight databases from inception to 30 September 2023. Subsequently, we conducted the Bayesian network meta-analysis (NMA). Interventions were ranked based on the surface under the cumulative ranking curve (SUCRA) probability values. To compare the effects of CHIs on two distinct outcomes, a clustering analysis was performed. Furthermore, the quality of the studies was assessed. Results: For the study, we included 43 RCTs, encompassing 2,707 participants. The study evaluated six herbal injections, namely, Shenfu injection (SF), Shengmai injection (SM), Shenmai injection (Sm), Danshen injection (DS), Huangqi injection (HQ), and Xinmailong injection (XML). The analysis findings suggested that Sm (MD = -1.05, 95% CI: -2.10, -0.09) and SF (MD = -0.81, 95% CI: -1.40, -0.25) showed better efficacy compared to Western medicine (WM) alone in reducing in-hospital mortality. The SUCRA values revealed that Sm + WM ranked first in terms of in-hospital mortality, cardiac index (CI), and hourly urine output but second in improving left ventricular ejection fraction (LVEF) and mean arterial pressure (MAP). SF + WM, however, had the greatest impact on raising the clinical effective rate. In MAP, SM + WM came out on top. Moreover, in terms of safety, only 14 studies (31.8%), including five types of CHIs: SF, Sm, SM, HQ, and XML, observed adverse drug reactions. Conclusion: To summarize, this analysis discovered that, in terms of patients suffering from CS, CHIs + WM yielded significantly greater advantages than WM alone. Based on in-hospital mortality and the remaining outcomes, Sm performed excellently among all the involved CHIs. Systematic Review Registration: https:// www.Crd.york.ac.uk/prospero/, identifier: CRD42022347053.

20.
Front Aging Neurosci ; 16: 1334887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476661

RESUMEN

Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...