Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140361, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098193

RESUMEN

Strawberries are rich in volatile organic compounds (VOCs), which are increasingly recognized as potential health-promoting factors. This study explored the health effects of intaking strawberry VOC extract and its dominant terpene, linalool. The results indicated that linalool and strawberry VOC extract significantly increased the abundance of beneficial bacteria like Lactobacillus, Bacillus, and Alistipes in mice. Moreover, mice treated with linalool and strawberry VOC extract exhibited notable reductions in serum pro-inflammatory cytokines; interleukin IL-6 decreased by 14.5% and 21.8%, respectively, while IL-1ß levels decreased by 9.6% and 13.4%, respectively. Triglyceride levels in the treated groups were reduced by 38.3% and 58.1%, respectively. Spearman's correlation analysis revealed that Bacillus negatively correlated with glucolipid indices, and Bifidobacterium and Dubosiella negatively correlated with inflammatory factors, indicating that alterations in glucolipid metabolism might be associated with the regulation of gut microbiota and systemic inflammation.


Asunto(s)
Monoterpenos Acíclicos , Bacterias , Fragaria , Microbioma Gastrointestinal , Inflamación , Compuestos Orgánicos Volátiles , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Ratones , Fragaria/química , Fragaria/metabolismo , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/metabolismo , Masculino , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Inflamación/metabolismo , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Interleucina-6/metabolismo
2.
Opt Lett ; 49(11): 3190-3193, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824360

RESUMEN

In this study, multi-wavelength second-harmonic generation (SHG) based on self-phase modulation (SPM) broadband supercontinuum (SC) was observed by employing a double-clad high nonlinear optical fiber (HNLF) in conjunction with a femtosecond laser. At a wavelength of 1050 nm and an average pump power of 320 mW, multiple phase-matching conditions were achieved, and SH signals of central wavelengths ∼530.7 nm, ∼525.1 nm, ∼503.5 nm, and ∼478.7 nm were observed, with SHG efficiency reaching ∼1.34 × 10-4. The SHG in this experiment can be attributed to the utilization of a doped optical fiber, where dopants create defect states, facilitating optical-chemical transformation and enhancing second-order polarization susceptibility. Additionally, theoretical simulations were conducted, aligning closely with the experimental findings. To the best of our knowledge, this work marks the first demonstration of multi-wavelength SHG in optical fibers. It offers a distinctive avenue for customizing multi-wavelength ultrafast light sources, exhibiting great application potential in the fields of medical diagnostics and optical sensing.

3.
Appl Opt ; 63(10): 2462-2468, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568524

RESUMEN

In this paper, the green upconversion (UC) fluorescence emission from E r 3+/Y b 3+/H o 3+ tri-doped tellurite glass is investigated for temperature sensing. The doping of H o 3+ ions not only enhances the chance of energy level transition but also avoids the influence of the thermal effect caused by the proximity of 2 H 11/2 and 4 S 3/2 energy levels. The luminescence characteristics at different Y b 3+ and H o 3+ ion concentration doping molar ratios were investigated, and the strongest luminescence characteristics were exhibited when the Y b 3+ ion concentration was at 5 mol% and H o 3+ at 0.2 mol%. Based on this, a tri-doped T e O 2-Z n O-B i 2 O 3 (TZB) no-core fiber was fabricated and connected with multimode fibers (MMFs) to form a temperature sensor. The temperature sensing performance of the tri-doped TZB temperature sensor was evaluated in detail over the temperature range of 255-365 K. The repeatability and stability of the temperature sensor was experimentally verified. The E r 3+/Y b 3+/H o 3+ tri-doped sensor can be used for noninvasive optical temperature sensing in the fields of environmental monitoring, biological sensing, and industrial process temperature control, etc.

4.
Plant Methods ; 20(1): 48, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521920

RESUMEN

BACKGROUND: Leaf water content (LWC) significantly affects rice growth and development. Real-time monitoring of rice leaf water status is essential to obtain high yield and water use efficiency of rice plants with precise irrigation regimes in rice fields. Hyperspectral remote sensing technology is widely used in monitoring crop water status because of its rapid, nondestructive, and real-time characteristics. Recently, multi-source data have been attempted to integrate into a monitored model of crop water status based on spectral indices. However, there are fewer studies using spectral index model coupled with multi-source data for monitoring LWC in rice plants. Therefore, 2-year field experiments were conducted with three irrigation regimes using four rice cultivars in this study. The multi-source data, including canopy ecological factors and physiological parameters, were incorporated into the vegetation index to accurately predict LWC in rice plants. RESULTS: The results presented that the model accuracy of rice LWC estimation after combining data from multiple sources improved by 6-44% compared to the accuracy of a single spectral index normalized difference index (ND). Additionally, the optimal prediction accuracy of rice LWC was produced using a machine algorithm of gradient boosted decision tree (GBDT) based on the combination of ND(1287,1673) and crop water stress index (CWSI) (R2 = 0.86, RMSE = 0.01). CONCLUSIONS: The machine learning estimation model constructed based on multi-source data fully utilizes the spectral information and considers the environmental changes in the crop canopy after introducing multi-source data parameters, thus improving the performance of spectral technology for monitoring rice LWC. The findings may be helpful to the water status diagnosis and accurate irrigation management of rice plants.

5.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340342

RESUMEN

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Asunto(s)
ADN-Topoisomerasas de Tipo I , G-Cuádruplex , Transcripción Genética , Humanos , ADN/química , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Ligandos , Inhibidores de Topoisomerasa I/farmacología
6.
Opt Lett ; 48(17): 4566-4569, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656556

RESUMEN

Two fiber-bundle-typed fan-in/fan-out (FI/FO) devices, "wavy hexagon-shaped silhouette" type (W-FI/FO) and "tortoise-shaped silhouette" type (T-FI/FO), have been proposed and manufactured based on tapering glass tubes for docking with a self-made 13-core 5-mode fiber. The W-FI/FO device consists of 19 5-mode fibers and has an extended layout based on the 13-core 5-mode fiber structure. It could dock multiple fibers with 19 or 13 cores of the same size standards. When connecting it with 13-core 5-mode, the average losses (ILs) of its five modes are 1.07 dB, 2.95 dB, 3.42 dB, 3.65 dB, and 4.38 dB. The cross talks of the five linearly polarized (LP) modes are -69.1 dB, -64.7 dB, -44.2 dB, -43.9 dB, and -39.1 dB. The T-FI/FO device has a similar core arrangement to the 13-core 5-mode fiber and its average ILs of the five LP modes are 0.23 dB, 1.31 dB, 2.09 dB, 2.66 dB, and 3.03 dB. The cross talks of its five LP modes between adjacent cores are -72.8 dB, -67.8 dB, -43.6 dB, -40.0 dB, and -35.3 dB. The IL and cross talk of the LP01 mode are of satisfactory values, which are 0.23 dB and -72.8 dB, respectively. These two proposed FI/FO devices are expected to be used for high-speed optical interconnection and fiber communication.

7.
ACS Appl Mater Interfaces ; 15(37): 44554-44562, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695309

RESUMEN

Paper-based flexible sensors are of great significance for promoting the development of green wearable electronic devices due to their good degradability and low cost. In this work, a paper-based wearable pressure sensor with a sandwich structure is proposed, which is assembled from a sensing layer printed with Ti3C2Tx MXene ink, an interdigitated electrode printed in the same simple and economical way, and two polyethylene terephthalate films. The demonstrated paper-based pressure sensor exhibits excellent sensitivity in a wide pressure sensing range, as well as cyclic stability at a certain pressure. The sensor can be attached to the human body's surface to monitor various pressure-related physical activities. Using a self-designed mobile phone APP, the special pressure signals collected from the sensor can be transmitted and translated, and an intelligent and encrypted information transmission system can be established. Since only ordinary printing paper and Ti3C2Tx MXene ink are used, the pressure sensor is easy to prepare, economical, and environmentally friendly, and it can be degraded by stirring in water without generating electronic waste. It can be foreseen that the proposed sensor shows bright application potential in the sustainable development of healthcare and human-computer interaction fields.


Asunto(s)
Ejercicio Físico , Titanio , Humanos , Electrodos
8.
Opt Express ; 31(18): 29312-29320, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710734

RESUMEN

In this paper, we fabricate a transmissive fluorescent temperature sensor (TFTS) that based on Er3+/Yb3+/Mo6+ tri-doped tellurite fiber, which has the advantages of compactness and simplicity, corrosion resistance, high stability and anti-electromagnetic interference. The doping of Mo6+ ions will enhance the up-conversion (UC) fluorescence emission efficiency of Er3+ ions, thus improving the signal-to-noise ratio of TFTS. Using the fluorescence intensity ratio (FIR) technique, the real-time thermal monitoring performance of TFTS is evaluated experimentally. Apart from good stability, its maximum relative sensitivity is 0.01068 K-1 at 274 K in the measured temperature range. In addition, it is successfully used to monitor the temperature variation of the stator core and stator winding of the motor in actual operation. The results show that the maximum error between the FIR-demodulated temperature and the reference temperature is less than 1.2 K, which fully confirms the effectiveness of the TFTS for temperature monitoring. Finally, the FIR-based TFTS in this work is expected to provide a new solution for accurate and real-time thermal monitoring of motors and the like.

9.
ACS Appl Mater Interfaces ; 15(36): 42992-43002, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37647575

RESUMEN

At present, wearable flexible pressure sensors have broad application prospects in fields such as motion monitoring and information transmission. However, it is still a challenge to design flexible pressure sensors with high sensitivity over a large sensing range and simple fabrication. Here, we use a simple "dipping-drying" method to fabricate a fabric-based flexible pressure sensor by coupling silver nanowires (AgNWs) with Ti3C2-MXene. The interaction between MXene and AgNWs helps realize a dual-layer sensing network, achieving good synergistic effects between pressure sensitivity and sensing range. The effects of the material combination and dip-coating sequence on the sensor's performance are systematically studied. The results show that the sensor was impregnated sequentially with AgNWs solution, and the MXene solution has the highest sensitivity (0.168 kPa-1) over a wide range (190 kPa). Meanwhile, it has the advantages of low response hysteresis and detection limit, as well as good linearity and durability. We further demonstrate the application of this sensor in human physiological signal monitoring and motion pattern recognition. It can also encrypt and transmit information according to different pressing states. In addition, the proposed pressure sensor array exhibits spatial resolution detection capabilities, laying the foundation for applications in the fields of motion monitoring and human-computer interaction.

10.
Opt Express ; 31(15): 23840-23850, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475225

RESUMEN

A surface plasmon resonance (SPR) temperature sensor based on a hollow core fiber (HCF) is designed in this paper. The sensor is composed of a multi-mode fiber (MMF)-HCF-MMF structure, and the self-made HCF is deposited successively with a thin layer of Au film (50 nm in thickness), gold nanoparticles (10 nm in diameter) and polydimethylsiloxane (PDMS). A series of theoretical and experimental investiagtions are conducted, and the results are as follows: the proposed sensing structure only with Au film can effectively excite the SPR effect, with a sensitivity of (2200 ± 100) nm / RIU in the refractive index (RI) range of 1.3334-1.3811; after adding AuNPS, the sensitivity of the sensor is effectively improved, the sensitivity can be increased to (3100 ± 100) nm / RIU, and after the PDMS coating, temperature sensing can be realized due to its unique temperature-sensitive characteristics, a linear sensitivity of (-2.1 ± 0.1) nm / °C is realized in the temperature range of 25 °C to 100 °C. The sensor has the advantages of simple structure, wide application, large measurement range, high sensitivity, good stability and repeatability. Meanwhile, the internal air hole of HCF leaves a preparation channel for dual-parameter measurement. It has broad application prospect in medical treatment, environmental monitoring and manufacturing industry.

11.
Environ Sci Pollut Res Int ; 30(28): 72146-72159, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37165265

RESUMEN

Animal husbandry is an important emission source of greenhouse gas. In order to discover the real situation of carbon emission in China's animal husbandry scientifically, the paper measured and calculated carbon emission in China's animal husbandry from 1997 to 2017 on the basis of soil and water resources. In addition, analyzing its time-order characters, structural characters, driving factors and decoupling relationships are all done in this treatise. Major findings are as follows: (1) The carbon emission of China's animal husbandry in 2017 was 374.3528 million tons, an increase of 17.8066 million tons over 1997, with the average annual growth rate of 0.24% and the average annual carbon emission of 398.7817 million tons; (2) There was a decreasing trend in carbon emission of intestinal fermentation in China's animal husbandry while there was an increasing trend in carbon emission of manure emission in China's animal husbandry; (3) The carbon emission of China's animal husbandry peaked in 2006 and went through three phases of up-down-steady between 1997 and 2017; (4) The contribution of cattle, pig, sheep, other large livestock, poultry and rabbits to China's animal husbandry carbon emissions decreased in turn, and the average contribution of cattle, pigs and sheep to China's animal husbandry carbon emissions was as high as 98.15%. (5) Five factors reducing carbon emission of China's animal husbandry were carbon intensity, agricultural industrial structure, agricultural population-water resources matching degree, agricultural water-soil resources and per capita cultivated land area. Two factors increasing carbon emission of China's animal husbandry were population and economic benefits of agriculture per unit agricultural population; (6) There was a generally weak decoupling between carbon emission in China's animal husbandry and animal husbandry's economic growth from 1997 to 2017.


Asunto(s)
Crianza de Animales Domésticos , Recursos Hídricos , Animales , Bovinos , Ovinos , Porcinos , Conejos , China , Desarrollo Económico , Suelo , Carbono/análisis , Dióxido de Carbono/análisis
12.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430523

RESUMEN

Water-saving and drought-resistant rice (WDR) has high a yield potential in drought. However, the photosynthetic adaptation mechanisms of WDR to drought and rehydration have yet to be conclusively determined. Hanyou 73 (HY73, WDR) and Huanghuazhan (HHZ, drought-sensitive cultivar) rice cultivars were subjected to drought stress and rewatering when the soil water potential was −180 KPa in the booting stage. The leaf physiological characteristics were dynamically determined at 0 KPa, −30 KPa, −70 KPa, −180 KPa, the first, the fifth, and the tenth day after rewatering. It was found that the maximum net photosynthetic rate (Amax) and light saturation point were decreased under drought conditions in both cultivars. The change in dark respiration rate (Rd) in HY73 was not significant, but was markedly different in HHZ. After rewatering, the photosynthetic parameters of HY73 completely returned to the initial state, while the indices in HHZ did not recover. The antioxidant enzyme activities and osmoregulatory substance levels increased with worsening drought conditions and decreased with rewatering duration. HY73 had higher peroxidase (POD) activity as well as proline levels, and lower catalase (CAT) activity, ascorbate peroxidase (APX) activity, malondialdehyde (MDA) level, and soluble protein (SP) content during all of the assessment periods compared with HHZ. In addition, Amax was markedly negatively correlated with superoxide dismutase (SOD), POD, CAT, and SP in HY73 (p < 0.001), while in HHZ, it was negatively correlated with SOD, CAT, APX, MDA, Pro, and SP, and positively correlated with Rd (p < 0.001). These results suggest that WDR has a more simplified adaptation mechanism to protect photosynthetic apparatus from damage in drought and rehydration compared with drought-sensitive cultivars. The high POD activity and great SP content would be considered as important physiological bases to maintain high photosynthetic production potential in WDR.


Asunto(s)
Sequías , Oryza , Oryza/metabolismo , Agua , Adaptación Fisiológica , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo , Prolina/metabolismo
13.
Opt Express ; 30(15): 26238-26250, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236819

RESUMEN

In this paper, a no-core tellurite optical fiber (NCTOF)-based sensor was proposed for cryogenic temperature detection in refrigeration process. The ultraviolet adhesive (UVA) dual-curing method was operated to stablish a sandwich-like composite structure, in which a section of NCTOF was compactly sandwiched between two segments of silica fiber to form multimode interference. The temperature sensing characteristics in cryogenic range were experimentally investigated by monitoring the transmission spectral movement, where a high sensitivity of 105.6 pm/°C was achieved in the range of -20-0 °C and 51.6 pm/°C in the range of -20-25 °C. The excellent performance was consistent with the simulation analysis. The maximum repeatability standard deviation and stability wavelength error of the sensor are 0.9799 pm/°C and 0.1676 nm, respectively. To the best of our knowledge, this is the first report on using tellurite optical fibers for cryogenic temperature detection, and the UVA dual-curing method provides a reliable solution for the integration and practical application of tellurite optical fiber. The proposed sensor is simple in structure, easy in fabrication, low in cost and excellent in performance. It can be expected to be used in food refrigeration, air-conditioning engineering, medical and health, industrial production, etc.

14.
Opt Lett ; 47(20): 5297-5300, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240346

RESUMEN

We demonstrate a plug-in tip sensor with a maximum cross section diameter of only 1 mm for real-time thermal monitoring of a high-density miniature winding coil, which can meet the miniaturization development needs of electromagnetic actuators. Due to the high upconversion luminescence efficiency, tellurite glass with an optimized Er3+/Yb3+ doping ratio is adhered to the end face of silica fiber for a temperature-sensitive tip. Temperature information is demodulated using the fluorescence intensity ratio technique, yielding a nonlinear response with R2 up to 0.9978. Within a wide temperature range of 253.55-442.45 K, the tip sensor exhibits good repeatability, excellent stability, high sensitivity of 52.7 × 10-4 K-1, small absolute error within ±1 K, and fast time response of 2.03 s. It has been successfully proven to be a miniaturized device with strong anti-interference ability for the health management of high-density winding coils.


Asunto(s)
Vidrio , Telurio , Fluorescencia , Dióxido de Silicio
15.
Appl Opt ; 61(24): 7033-7040, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36256319

RESUMEN

In this paper, we design a free-form off-axis three-mirror optical system with a low f-number and compact structure, which can be used as an infrared reflection imager. The initial structure is calculated from the near-axis optical transfer matrix based on third-order aberration theory. Particular constraints are designed to install all mirrors on the same substrate for simultaneous milling, which reduces the processing difficulty and effectively avoids errors caused by component assembly. Zernike free-form surfaces are introduced to correct aberrations. This optical system has a field of view of 5∘×5∘ and an f-number of 1.82; the modulation transfer function of the system is higher than 0.6 at 30 lp/mm. The results of the tolerance assignment of the system were verified by the Monte Carlo method, and the machining tolerance is reasonable and easy to achieve. This design not only improves the optical performance of the system but also enhances the feasibility of manufacturing.

16.
ACS Appl Mater Interfaces ; 14(40): 45978-45987, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178119

RESUMEN

Although fiber-based flexible piezoresistive pressure sensors have received extensive attention because of their simple fabrication and easy integration, the common practice of using a single material as the sensing layer often leads to unsatisfactory sensitivity and a limited sensing range. Herein, we exploit the combination of reduced graphene oxide (rGO) and two-dimensional transition-metal carbides and nitrides (MXene), use a polyester filament (PET) as the fiber matrix, and fabricate an MX/rGO PET-based flexible pressure sensor using the "dipping-drying" method. A systematic study is conducted concerning the effect of the dip-coating sequence and material combination on the sensor's resistance and sensitivity, which reveals that MX/rGO PET has the smallest resistance and the highest sensitivity (1.24 kPa-1). A series of tests are conducted to evaluate the pressure sensing characteristics of the MX/rGO PET-based pressure sensor, confirming its good linearity, fast response speed, low detection limit, and stable performance. In addition, the sensor has been successfully used to monitor various human joint activities and physiological signals such as breathing, demonstrating great application potential in the field of personal health care. To further enhance the practical utility, an APP has been designed to analyze and display the collected signals, and the constructed sensor network also provides an ingenious method for information encryption and transmission via pressure sensing. In all, the MX/rGO PET-based pressure sensor proposed in this work is expected to provide a competitive scheme for wearable flexible electronic devices in information transmission and human-computer interaction in the future.

17.
Opt Lett ; 47(13): 3215-3218, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776588

RESUMEN

We demonstrate the generation of broadband dispersive waves (DWs) and solitons in an 80-cm tellurite microstructured optical fiber (TMOF) designed and fabricated with 78TeO2-5ZnO-12LiCO3-5Bi2O3 (TZLB) glass. A 1810-nm femtosecond laser is used as the pump source with an average pump power ranging from 33 mW to 175 mW, where the tunable frequency range is 211.1 THz, which corresponds to the tunable wavelength range of 1742.9 nm. At 175 mW, the trapped multiple DWs are located at 923.8 nm, 1039.2 nm, 1121.6 nm, and 1204.6 nm and the multiple solitons are located at 2666.7 nm, 2426.1 nm, 2165.9 nm, 1952.7 nm, and 1842.1 nm. The experimentally obtained maximum DW conversion efficiency is 14%, and the maximum soliton conversion efficiency is 43%. The experimental and theoretical results of pulse evolution in the TMOF agree very well. To the best of our knowledge, this is the first time that nine peaks of frequency conversions have been realized simultaneously in non-silicon fibers. The exceptionally high nonlinearity and broadband-tunable characteristics of the proposed TMOF are promising components for the development of compact and highly efficient tunable mid-infrared fiber lasers, wavelength converters, and time-frequency metrology.

18.
J Microbiol Biotechnol ; 32(6): 761-767, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484971

RESUMEN

EHT1 and EEB1 are the key Saccharomyces cerevisiae genes involved in the synthesis of ethyl esters during wine fermentation. We constructed single (Δeht1, Δeeb1) and double (Δeht1Δeeb1) heterogenous mutant strains of the industrial diploid wine yeast EC1118 by disrupting one allele of EHT1 and/or EEB1. In addition, the aromatic profile of wine produced during fermentation of simulated grape juice by these mutant strains was also analyzed. The expression levels of EHT1 and/or EEB1 in the relevant mutants were less than 50% of the wild-type strain when grown in YPD medium and simulated grape juice medium. Compared to the wild-type strain, all mutants produced lower amounts of ethyl esters in the fermented grape juice and also resulted in distinct ethyl ester profiles. ATF2, a gene involved in acetate ester synthesis, was expressed at higher levels in the EEB1 downregulation mutants compared to the wild-type and Δeht1 strains during fermentation, which was consistent with the content of acetate esters. In addition, the production of higher alcohols was also markedly affected by the decrease in EEB1 levels. Compared to EHT1, EEB1 downregulation had a greater impact on the production of acetate esters and higher alcohols, suggesting that controlling EEB1 expression could be an effective means to regulate the content of these aromatic metabolites in wine. Taken together, the synthesis of ethyl esters can be decreased by deleting one allele of EHT1 and EEB1 in the diploid EC1118 strain, which may modify the ester profile of wine more subtly compared to the complete deletion of target genes.


Asunto(s)
Vitis , Vino , Acetatos , Aciltransferasas , Alcoholes/metabolismo , Regulación hacia Abajo , Ésteres , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Vino/análisis
19.
Appl Opt ; 61(4): 1082-1086, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35201082

RESUMEN

In this paper, an annular winding structure made of single-mode optical fiber is proposed as the core of a cost-efficient and reliable annular optical fiber temperature sensor (AOFTS). The sensor is mainly due to the multi-mode interference effect to achieve real-time response to external temperature changes. The experimental results show that the average temperature sensitivity of the sensor is about 255.5 pm/°C in the temperature range of -20∘C-110∘C; it has higher sensitivity at low temperatures. At -20∘C, the sensitivity of the AOFTS reaches 450 pm/°C. The sensor has the advantages of simple fabrication, low fabrication cost, strong stability, and good reproducibility and repeatability. It has great application prospects in the field of low-temperature detection.

20.
Opt Lett ; 47(4): 874-877, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167547

RESUMEN

In this paper, the self-phase modulation (SPM) effect in a double-cladding single-mode tellurite optical fiber (DC-SMTOF) was exploited for temperature sensing. The DC-SMTOF was fabricated based on a TeO2-ZnO-Li2O-Bi2O3 (TZLB) glass material that has a thermo-optical coefficient as high as -16.4×10-6/°C. The temperature sensing performance was evaluated by detecting the 3-dB bandwidth of the SPM spectra with the variation of temperature at different pump wavelength and different average pump power. The temperature sensitivity was obtained to be -2.971 nm/°C with a resolution of 0.0168°C. Both simulation and experiment confirmed that a longer pump wavelength and higher average pump power will result in a higher temperature sensitivity. To the best of our knowledge, this is the first study concerning SPM-based temperature sensing in a tellurite optical fiber. The proposed temperature sensor has a compact structure, and it can realize temperature sensing of high sensitivity without any fiber modification. This work opens the road toward explorations of a novel temperature sensing technology combined with soft glass fibers and nonlinear phenomenon, and is expected to deepen our understanding in the application of these complex nonlinear phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...