Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Infect Dis Model ; 9(2): 618-633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38645696

RESUMEN

The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621909

RESUMEN

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Asunto(s)
Isquemia Encefálica , Panax notoginseng , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Saponinas , Triterpenos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Factor de von Willebrand , Angiogénesis , Farmacología en Red , Ratas Sprague-Dawley , Saponinas/farmacología , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral
3.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446660

RESUMEN

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Asunto(s)
Motivación , Transducción de Señal , Ratones , Masculino , Animales , Neuronas/metabolismo , Receptor ErbB-4/metabolismo , Amígdala del Cerebelo/metabolismo , Neurregulina-1/metabolismo
4.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041932

RESUMEN

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Oxígeno Singlete/metabolismo , Transcriptoma , Estomas de Plantas/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5767-5778, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114172

RESUMEN

This study aims to explore the molecular regulation mechanism of the differential accumulation of flavonoids in the leaves and roots of Sarcandra glabra. Liquid chromatography-mass spectrometry(LC-MS) and high-throughput transcriptome sequencing(RNA-seq) were employed to screen out the flavonoid-related differential metabolites and differentially expressed genes(DEGs) encoding key metabolic enzymes. Eight DEGs were randomly selected for qRT-PCR verification. The results showed that a total of 37 flavonoid-related differential metabolites between the leaves and roots of S. glabra were obtained, including pinocembrin, phlorizin, na-ringenin, kaempferol, leucocyanidin, and 5-O-caffeoylshikimic acid. The transcriptome analysis predicted 36 DEGs associated with flavonoids in the leaves and roots of S. glabra, including 2 genes in the PAL pathway, 3 genes in the 4CL pathway, 2 genes in the CHS pathway, 4 genes in the CHI pathway, 2 genes in the FLS pathway, 1 gene in the DFR pathway, 1 gene in the CYP73A pathway, 1 gene in the CYP75B1 pathway, 3 genes in the PGT1 pathway, 6 genes in the HCT pathway, 2 genes in the C3'H pathway, 1 gene in the CCOAOMT pathway, 1 gene in the ANR pathway, 1 gene in the LAR pathway, 2 genes in the 3AT pathway, 1 gene in the BZ1 pathway, 2 genes in the IFTM7 pathway, and 1 gene in the CYP81E9 pathway. Six transcription factors, including C2H2, bHLH, and bZIP, were involved in regulating the differential accumulation of flavonoids in the leaves and roots of S. glabra. The qRT-PCR results showed that the up-or down-regulated expression of the 8 randomly selected enzyme genes involved in flavonoid synthesis in the leaves and roots of S. glabra was consistent with the transcriptome sequencing results. This study preliminarily analyzed the transcriptional regulation mechanism of differential accumulation of flavonoids in the leaves and roots of S. glabra, laying a foundation for further elucidating the regulatory effects of key enzyme genes and corresponding transcription factors on the accumulation of flavonoids in S. glabra.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Flavonoides , Perfilación de la Expresión Génica , Transcriptoma , Factores de Transcripción/metabolismo
6.
Infect Drug Resist ; 16: 7797-7808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148771

RESUMEN

Purpose: To compare the effectiveness of azvudine and nirmatrelvir/ritonavir for the treatment of coronavirus disease (COVID-19). Patients and Methods: We conducted a retrospective analysis of data from 576 patients with COVID-19, comprising 195 patients without antiviral therapy, 226 patients treated with azvudine, 114 patients treated with nirmatrelvir/ritonavir, and 41 patients were treated with azvudine and nirmatrelvir/ritonavir concurrently. We compared their symptoms, mortality rates, and the length and cost of hospitalization. Results: The incidence of symptoms was similar in patients treated with azvudine and in those treated with nirmatrelvir/ritonavir. However, among patients experiencing weakness, the duration of weakness was significantly shorter in the azvudine group than in the nirmatrelvir/ritonavir group (P=0.029). Mortality did not differ significantly between the azvudine group and the nirmatrelvir/ritonavir group (18.14% vs.10.53%, P=0.068). Among "severe patients", the mortality rate was markedly lower in patients treated with nirmatrelvir/ritonavir than in patients treated with azvudine (16.92% vs.32.17%, P=0.026). In patients with hepatic insufficiency, those treated with nirmatrelvir/ritonavir had substantially lower mortality than those treated with azvudine (15.09% vs.34.25%, P=0.016). In addition, patients treated with nirmatrelvir/ritonavir had longer hospital stays (P=0.002) and higher hospital costs (P<0.001) than those receiving azvudine. Compared with patients treated with nirmatrelvir/ritonavir or azvudine alone, patients taking nirmatrelvir/ritonavir and azvudine concurrently had no significant improvement in survival (P>0.05), length of stay (P>0.05), or hospital costs (P>0.05). Conclusion: Azvudine is recommended for patients with non-severe COVID-19 with weakness. Nirmatrelvir/ritonavir is recommended for patients with severe COVID-19, to reduce mortality, and it could be the best choice for patients with hepatic insufficiency. The concurrent use of nirmatrelvir/ritonavir and azvudine in patients with COVID-19 could be not recommended.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1107-1112, 2023 Nov 15.
Artículo en Chino | MEDLINE | ID: mdl-37990453

RESUMEN

OBJECTIVES: To study the efficacy and safety of Xiyanping injection through intramuscular injection for the treatment of acute bronchitis in children. METHODS: A prospective study was conducted from December 2021 to October 2022, including 78 children with acute bronchitis from three hospitals using a multicenter, randomized, parallel-controlled design. The participants were divided into a test group (conventional treatment plus Xiyanping injection; n=36) and a control group (conventional treatment alone; n=37) in a 1:1 ratio. Xiyanping injection was administered at a dose of 0.3 mL/(kg·d) (total daily dose ≤8 mL), twice daily via intramuscular injection, with a treatment duration of ≤4 days and a follow-up period of 7 days. The treatment efficacy and safety were compared between the two groups. RESULTS: The total effective rate on the 3rd day after treatment in the test group was significantly higher than that in the control group (P<0.05), while there was no significant difference in the total effective rate on the 5th day between the two groups (P>0.05). The rates of fever relief, cough relief, and lung rale relief in the test group on the 3rd day after treatment were higher than those in the control group (P<0.05). The cough relief rate on the 5th day after treatment in the test group was higher than that in the control group (P<0.05), while there was no significant difference in the fever relief rate and lung rale relief rate between the two groups (P>0.05). The cough relief time, daily cough relief time, and nocturnal cough relief time in the test group were significantly shorter than those in the control group (P<0.05), while there were no significant differences in the fever duration and lung rale relief time between the two groups (P>0.05). There was no significant difference in the incidence of adverse events between the two groups (P>0.05). CONCLUSIONS: The overall efficacy of combined routine treatment with intramuscular injection of Xiyanping injection in the treatment of acute bronchitis in children is superior to that of routine treatment alone, without an increase in the incidence of adverse reactions.


Asunto(s)
Bronquitis , Tos , Humanos , Niño , Inyecciones Intramusculares , Tos/tratamiento farmacológico , Estudios Prospectivos , Ruidos Respiratorios , Bronquitis/tratamiento farmacológico , Resultado del Tratamiento
8.
Risk Manag Healthc Policy ; 16: 2579-2591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034895

RESUMEN

Purpose: To explore the effects of the clinical pathway on the outcomes of patients with non-variceal upper gastrointestinal bleeding. Materials and Methods: Randomized controlled trial. The study was conducted in two medical centers in China from 1 June 2022 to 31 December 2022. Patients with a diagnosis of non-variceal upper gastrointestinal bleeding who provided written informed consent were consecutively assigned to the intervention group. The patients in the intervention group were treated using the clinical pathway, while the control group received routine care and follow-up. Time, cost, complications, and prognostic indicators were analyzed. Intentional-to-treat analysis and per-protocol analysis were used for data analysis. Results: A total of 114 eligible patients with non-variceal upper gastrointestinal bleeding were randomly divided into two groups and included in the intention-to-treat analysis. In addition, 106 patients were included in the per-protocol analysis. The median age of the 106 patients was 57 years (range, 18-92 years) and 83.0% were male. There were no significant differences between groups regarding the baseline characteristics. The intervention group demonstrated a statistically significantly shorter length of stay, lower hospital cost (ie, cost during hospitalization, cost in the emergency room, and cost in the ward), significantly fewer cases of complications, and a higher level of patient satisfaction when compared with the control group. There was no significant difference between the two groups in the rates of transfusion, repeat endoscopy, rebleeding readmission, and mortality. Conclusion: The implementation of the clinical pathway for patients with non-variceal upper gastrointestinal bleeding may help improve patient outcomes and satisfaction. Trial Registration Number: ChiCTR2200060316. Registration Link: https://www.chictr.org.cn/.

9.
Brain Res ; 1820: 148578, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709161

RESUMEN

The α-amino-3-hydroxy-5-methylisoxazole-4-isoxazolepropionic acid receptor (AMPAR) has been recognized to play a vital role in the development of neuropathic pain. Recent studies have indicated that protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) are involved in the phosphorylation of AMPARs. However, whether PKC and PICK1 were involved in the AMPAR phosphorylation in the trigeminal ganglion (TG) to participate in orofacial neuropathic pain remains enigmatic. A behavioral test was utilized to evaluate the head withdrawal threshold (HWT) after chronic constriction injury of the infraorbital nerve (CCI-ION). The distribution and expression of GluA1, GluA2, PKC, and PICK1 were examined in the trigeminal ganglion (TG) by immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, immunoblotting, and co-immunoprecipitation. Intra-ganglionic injections of drugs were performed to investigate the regulation mechanism. The present study demonstrated that CCI-ION-induced mechanical allodynia was maintained over at least 21 days. GluA1 and GluA2 were mainly expressed in the neurons. Trigeminal nerve injury potentiated the phosphorylation of GluA1, GluA2, and PKC in the TG, which was prevented by inhibiting PKC with chelerythrine chloride. Additionally, PICK1 colocalized and interacted with GluA2 in the TG. Following blocking PICK1 with FSC-231, the phosphorylation of GluA2 decreased. Finally, inhibition of PKC and PICK1 both alleviated mechanical allodynia in the whisker pad of CCI-ION mice. In conclusion, activation of PKC and PICK1 contribute to orofacial allodynia by regulating AMPAR phosphorylation in the TG of male mice, which provides potential therapeutic targets for alleviating orofacial neuropathic pain.

10.
Chemistry ; 29(62): e202302397, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37583100

RESUMEN

Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.

12.
World J Stem Cells ; 15(6): 589-606, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37424952

RESUMEN

BACKGROUND: Accumulating evidence suggests that the maxillary process, to which cranial crest cells migrate, is essential to tooth development. Emerging studies indicate that Cd271 plays an essential role in odontogenesis. However, the underlying mechanisms have yet to be elucidated. AIM: To establish the functionally heterogeneous population in the maxillary process, elucidate the effects of Cd271 deficiency on gene expression differences. METHODS: p75NTR knockout (Cd271-/-) mice (from American Jackson laboratory) were used to collect the maxillofacial process tissue of p75NTR knockout mice, and the wild-type maxillofacial process of the same pregnant mouse wild was used as control. After single cell suspension, the cDNA was prepared by loading the single cell suspension into the 10x Genomics Chromium system to be sequenced by NovaSeq6000 sequencing system. Finally, the sequencing data in Fastq format were obtained. The FastQC software is used to evaluate the quality of data and CellRanger analyzed the data. The gene expression matrix is read by R software, and Seurat is used to control and standardize the data, reduce the dimension and cluster. We search for marker genes for subgroup annotation by consulting literature and database; explore the effect of p75NTR knockout on mesenchymal stem cells (MSCs) gene expression and cell proportion by cell subgrouping, differential gene analysis, enrichment analysis and protein-protein interaction network analysis; understand the interaction between MSCs cells and the differentiation trajectory and gene change characteristics of p75NTR knockout MSCs by cell communication analysis and pseudo-time analysis. Last we verified the findings single cell sequencing in vitro. RESULTS: We identified 21 cell clusters, and we re-clustered these into three subclusters. Importantly, we revealed the cell-cell communication networks between clusters. We clarified that Cd271 was significantly associated with the regulation of mineralization. CONCLUSION: This study provides comprehensive mechanistic insights into the maxillary- process-derived MSCs and demonstrates that Cd271 is significantly associated with the odontogenesis in mesenchymal populations.

13.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2530-2537, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282882

RESUMEN

This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1ß, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.


Asunto(s)
Interleucina-18 , FN-kappa B , FN-kappa B/genética , FN-kappa B/metabolismo , Interleucina-18/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Ciclina D1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Músculo Liso Vascular , Proliferación Celular , Transducción de Señal , Citocinas/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo
14.
Chemistry ; 29(48): e202301575, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37306241

RESUMEN

Manipulating the radical concentration to modulate the properties in solid multifunctional materials is an attractive topic in various frontier fields. Viologens have the unique redox capability to generate radical states through reversible electron transfer (ET) under external stimuli. Herein, taking the viologens as the model, two kinds of crystalline compounds with different molecule-conjugated systems were designed and synthesized. By subjecting the specific model viologens to pressure, the cross-conjugated 2-X all exhibit much higher radical concentrations, along with more sensitive piezochromic behaviors, compared to the linear-conjugated 1-X. Unexpectedly, we find that the electrical resistance (R) of 1-NO3 decreased by three orders of magnitude with the increasing pressure, while that in high-radical-concentration 2-NO3 remained almost unchanged. To date, such unusual invariant conductivity has not been documented in molecular-based materials under high pressure, breaking the conventional wisdom that the generations of radicals are beneficial to improve conductivity. We highlight that adjusting the molecular conjugation modes can be used as an effective way to regulate the radical concentrations and thus modulate properties rationally.

15.
J Org Chem ; 88(9): 5936-5943, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043752

RESUMEN

Two rearranged norditerpenoids with novel tricyclic carbon skeletons, strophiofimbrin A (1) and strophiofimbrin B (2), were isolated from Strophioblachia fimbricalyx. Their structures were established by 1D/2D NMR spectroscopy, HRESIMS, quantum chemistry calculations, and X-ray diffraction analyses. 1 and 2 represented the first examples of diterpenoids with unprecedented 5/6/7-fused ring systems. In the proposed biosynthetic pathway, they were suspected to derive from cleistanthane norditerpenoids via ring opening, expansion, cyclization, and rearrangement based on the existence of phenanthrenone and cleistanthane diterpenoids from Strophioblachia and Trigonostemon, two closely related genera of the Euphorbiaceae family. Furthermore, compounds 1 and 2 exhibited significant proliferation inhibition and obvious neuroprotective effects.


Asunto(s)
Diterpenos , Euphorbiaceae , Estructura Molecular , Carbono/química , Diterpenos/farmacología , Diterpenos/química , Espectroscopía de Resonancia Magnética , Euphorbiaceae/química
16.
J Cancer Res Clin Oncol ; 149(10): 7053-7067, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36862159

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) constitute the main infiltrating immune cells in the solid tumor microenvironment. Amounting studies have analyzed the antitumor effect on immune response induced by Toll-like receptor (TLR) agonists, such as lipopolysaccharide (LPS), γ-interferon (γ-IFN), and palmitic Acid (PA). However, their combined treatment for gastric cancer (GC) has not been illuminated. METHODS: We investigated the relevance of macrophage polarization and the effect of PA and γ-IFN in GC in vitro and in vivo. M1 and M2 macrophage-associated markers were measured by real-time quantitative PCR and flow cytometry, and the activation level of the TLR4 signaling pathways was evaluated by western blot analysis. The effect of PA and γ-IFN on the proliferation, migration, and invasion of GC cells (GCCs) was evaluated by Cell-Counting Kit-8, transwell assays, and wound-healing assays. In vivo animal models were used to verify the effect of PA and γ-IFN on tumor progression, and the M1 and M2 macrophage markers, CD8 + T lymphocytes, regulatory T cells (Treg) cells, and the myeloid-derived suppressor cells (MDSCs) in tumor tissues were analyzed by flow cytometry and immunohistochemical (IHC). RESULTS: The results showed that this combination strategy enhanced M1-like macrophages and diminished M2-like macrophages through the TLR4 signaling pathway in vitro. In addition, the combination strategy impairs the proliferative and migratory activity of GCC in vitro and in vivo. While, the antitumor effect was abolished using the TAK-424 (a specific TLR-4 signaling pathway inhibitor) in vitro. CONCLUSIONS: The combined treatment of PA and γ-IFN inhibited GC progression by modulating macrophages polarization via the TLR4 pathway.


Asunto(s)
Interferón gamma , Neoplasias Gástricas , Animales , Interferón gamma/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Receptor Toll-Like 4/metabolismo , Ácido Palmítico/farmacología , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
17.
Protoplasma ; 260(5): 1349-1364, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36949344

RESUMEN

Grafting with pumpkin as rootstock could improve chilling tolerance of cucumber; however, the underlying mechanism of grafting-induced chilling tolerance remains unclear. Here, we analyzed the difference of physiological and transcriptional level between own-rooted (Cs/Cs) and hetero-grafted (Cs/Cm) cucumber seedlings under chilling stress. The results showed that grafting with pumpkin significantly alleviated the chilling injury as evidenced by slightly symptoms, lower contents of electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) and higher relative water content in Cs/Cm seedlings compared with Cs/Cs seedlings under chilling stress. RNA-seq data showed that grafting induced more DGEs at 8 °C/5 °C compared with 25 °C/18 °C. In accordance with the increase of the activities of antioxidant enzymes (SOD, POD, CAT, APX), grafting upregulated the expression of the regulated redox-related genes such as GST, SOD, and APX. Moreover, grafting increased the expression of genes participated in central carbon metabolism to promote the conversion and decomposition of sugar, which provided more energy for the growth of Cs/Cm seedlings under chilling stress. In addition, grafting regulated the genes involved in the intracellular signal transduction pathways such as calcium signal (CAML, CML, and CDPK) and inositol phospholipid signal (PLC), as well as changed the gene expression of plant hormone signal transduction pathways (ARF, GAI, ABF, and PYR/PYL). These results provide a physiological and transcriptional basis for the molecular mechanism of grafting-induced chilling tolerance of cucumber seedlings.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Superóxido Dismutasa/metabolismo , Plantones/metabolismo
18.
Nat Commun ; 14(1): 729, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759610

RESUMEN

Alterations in energy metabolism are associated with depression. However, the role of glycolysis in the pathogenesis of depression and the underlying molecular mechanisms remain unexplored. Through an unbiased proteomic screen coupled with biochemical verifications, we show that the levels of glycolysis and lactate dehydrogenase A (LDHA), a glycolytic enzyme that catalyzes L-lactate production, are reduced in the dorsomedial prefrontal cortex (dmPFC) of stress-susceptible mice in chronic social defeat stress (CSDS) model. Conditional knockout of LDHA from the brain promotes depressive-like behaviors in both male and female mice, accompanied with reduced L-lactate levels and decreased neuronal excitability in the dmPFC. Moreover, these phenotypes could be duplicated by knockdown of LDHA in the dmPFC or specifically in astrocytes. In contrast, overexpression of LDHA reverses these phenotypic changes in CSDS-susceptible mice. Mechanistic studies demonstrate that L-lactate promotes neuronal excitability through monocarboxylic acid transporter 2 (MCT2) and by inhibiting large-conductance Ca2+-activated potassium (BK) channel. Together, these results reveal a role of LDHA in maintaining neuronal excitability to prevent depressive-like behaviors.


Asunto(s)
Astrocitos , Ácido Láctico , Ratones , Masculino , Femenino , Animales , Lactato Deshidrogenasa 5/metabolismo , Astrocitos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Proteómica , Proteínas Portadoras
19.
J Environ Manage ; 335: 117472, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827800

RESUMEN

In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Antibacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana/genética , China
20.
J Neurosci Res ; 101(7): 1170-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36807930

RESUMEN

Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.


Asunto(s)
Hiperalgesia , Receptor del Glutamato Metabotropico 5 , Ratas , Ratones , Masculino , Animales , Hiperalgesia/etiología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Nervio Mandibular/metabolismo , Nervio Mandibular/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA