Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134091

RESUMEN

Efficient capture of 99TcO4- is the focus in nuclear waste management. For laboratory operation, ReO4- is used as a nonradioactive alternative to 99TcO4- to develop high-performance adsorbents for the treatment. However, the traditional design of new adsorbents is primarily driven by the chemical intuition of scientists and experimental methods, which are inefficient. Herein, a machine learning (ML)-assisted material genome approach (MGA) is proposed to precisely design high-efficiency adsorbents. ML models were developed to accurately predict adsorption capacity from adsorbent structures and solvent environment, thus predicting and screening the 2450 virtual pyridine polymers obtained by MGA, and it was found that halogen functionalization can enhance its adsorption efficiency. Two halogenated functional pyridine polymers (F-C-CTF and Cl-C-CTF) predicted by this approach were synthesized that exhibited excellent acid/alkali resistance and selectivity for ReO4-. The adsorption capacity reached 940.13 (F-C-CTF) and 732.74 mg g-1 (Cl-C-CTF), which were better than those of most reported adsorbents. The adsorption mechanism is comprehensively elucidated by experiment and density functional theory calculation, showing that halogen functionalization can form halogen-bonding interactions with 99TcO4-, which further justified the theoretical plausibility of the screening results. Our findings demonstrate that ML-assisted MGA represents a paradigm shift for next-generation adsorbent design.

2.
Front Neurol ; 15: 1355104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193146

RESUMEN

Background: Deep brain stimulation (DBS) is a potential treatment for improving movement disorder. However, few large-sample studies can reveal its efficacy and safety. This study aims to initially explore the efficacy and safety of DBS in the mesencephalic locomotor region (MLR) on motor function in patients with post-stroke hemiplegia. Methods/design: This multicenter, prospective, double-blind, randomized crossover clinical trial aims to assess the safety and effectiveness of Deep Brain Stimulation (DBS) in the mesencephalic locomotor region (MLR) for patients with moderate to severe post-stroke hemiplegia. Sixty-two patients with stable disease after a year of conservative treatment will be enrolled and implanted with deep brain electrodes. Post-surgery, patients will be randomly assigned to either the DBS group or the control group, with 31 patients in each. The DBS group will receive electrical stimulation 1 month later, while the control group will undergo sham stimulation. Stimulation will be discontinued after 3 and 6 months, followed by a 2-week washout period. Subsequently, the control group will receive electrical stimulation, while the DBS group will undergo sham stimulation. Both groups will resume electrical stimulation at the 9th and 12th-month follow-ups. Post-12-month follow-up, motor-related scores will be collected for analysis, with the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) as the primary metric. Secondary outcomes include balance function, neuropsychiatric behavior, fall risk, daily living activities, and quality of life. This study aims to provide insights into the therapeutic benefits of DBS for post-stroke hemiplegia patients. Result/conclusion: We proposed this study for the first time to comprehensively explore the effectiveness and safety of DBS in improving motor function for post-stroke hemiplegia, and provide evidence for DBS in the treatment of post-stroke hemiplegia. Study limitations are related to the small sample size and short study period. Clinical Trial Registration: Clinicaltrials.gov, identifier NCT05968248.

3.
J Crit Care Med (Targu Mures) ; 10(2): 130-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39109270

RESUMEN

Background: Critical illness polyneuropathy (CIP) is a complex disease commonly occurring in septic patients which indicates a worse prognosis. Herein, we investigated the characteristics of cerebrospinal fluid (CSF) in septic patients with CIP. Methods: This retrospective study was conducted between Match 1, 2018, and July 1, 2022. Patients with sepsis who underwent a CSF examination and nerve electrophysiology were included. The levels of protein, glucose, lipopolysaccharide, white blood cell (WBC), interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor (TNF) α in CSF were measured. The fungi and bacteria in CSF were also assessed. Results: Among the 175 septic patients, 116 (66.3%) patients were diagnosed with CIP. 28-day Mortality in CIP patients was higher than that in non-CIP patients (25.0% vs. 10.2%, P = 0.02) which was confirmed by survival analysis. The results of propensity score matching analysis (PSMA) indicated a significant difference in the level of protein, WBC, IL-1, IL-6, IL-8, and TNFα present in the CSF between CIP patients and non-CIP patients. The results of the receiver operating characteristic (ROC) analysis showed that IL-1, WBC, TNFα, and their combined indicator had a good diagnostic value with an AUC > 0.8. Conclusion: The increase in the levels of WBC, IL-1, and TNFα in CSF might be an indicator of CIP in septic patients.

4.
Neuroimage Clin ; 43: 103652, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146836

RESUMEN

Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.

5.
Nat Commun ; 15(1): 5203, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890380

RESUMEN

Empathy enables understanding and sharing of others' feelings. Human neuroimaging studies have identified critical brain regions supporting empathy for pain, including the anterior insula (AI), anterior cingulate (ACC), amygdala, and inferior frontal gyrus (IFG). However, to date, the precise spatio-temporal profiles of empathic neural responses and inter-regional communications remain elusive. Here, using intracranial electroencephalography, we investigated electrophysiological signatures of vicarious pain perception. Others' pain perception induced early increases in high-gamma activity in IFG, beta power increases in ACC, but decreased beta power in AI and amygdala. Vicarious pain perception also altered the beta-band-coordinated coupling between ACC, AI, and amygdala, as well as increased modulation of IFG high-gamma amplitudes by beta phases of amygdala/AI/ACC. We identified a necessary combination of neural features for decoding vicarious pain perception. These spatio-temporally specific regional activities and inter-regional interactions within the empathy network suggest a neurodynamic model of human pain empathy.


Asunto(s)
Empatía , Giro del Cíngulo , Percepción del Dolor , Humanos , Percepción del Dolor/fisiología , Empatía/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Electroencefalografía , Mapeo Encefálico , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Electrocorticografía , Dolor/fisiopatología , Dolor/psicología
6.
Exp Hematol Oncol ; 13(1): 52, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760861

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1ß and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1ß signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

7.
Sci Total Environ ; 932: 172878, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697541

RESUMEN

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.


Asunto(s)
Eutrofización , Lantano , Microcystis , Fósforo , Lantano/química , Contaminantes Químicos del Agua/análisis , Hidróxido de Aluminio/química , Adsorción , Restauración y Remediación Ambiental/métodos
8.
Neurotherapeutics ; 21(4): e00367, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38679556

RESUMEN

Deep brain stimulation (DBS) is an effective therapy for Meige syndrome (MS). However, the DBS efficacy varies across MS patients and the factors contributing to the variable responses remain enigmatic. We aim to explain the difference in DBS efficacy from a network perspective. We collected preoperative T1-weighted MRI images of 76 MS patients who received DBS in our center. According to the symptomatic improvement rates, all MS patients were divided into two groups: the high improvement group (HIG) and the low improvement group (LIG). We constructed group-level structural covariance networks in each group and compared the graph-based topological properties and interregional connections between groups. Subsequent functional annotation and correlation analyses were also conducted. The results indicated that HIG showed a higher clustering coefficient, longer characteristic path length, lower small-world index, and lower global efficiency compared with LIG. Different nodal betweennesses and degrees between groups were mainly identified in the precuneus, sensorimotor cortex, and subcortical nuclei, among which the gray matter volume of the left precentral gyrus and left thalamus were positively correlated with the symptomatic improvement rates. Moreover, HIG had enhanced interregional connections within the somatomotor network and between the somatomotor network and default-mode network relative to LIG. We concluded that the high and low DBS responders have notable differences in large-scale network architectures. Our study sheds light on the structural network underpinnings of varying DBS responses in MS patients.

9.
Brain Behav ; 14(3): e3462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468484

RESUMEN

INTRODUCTION: The objective of this study was to investigate changes in vision-related resting-state activity in patients with suprasellar tumors (ST) who experienced vision deterioration after surgery. METHODS: Twelve patients with ST and vision deterioration after surgery were included in the study. Resting-state functional connectivity (FC) was compared before and after surgery using a seed-based analysis with a priori specified regions of interest (ROIs) within the visual areas. The differences between the two groups were identified using a paired t-test. RESULTS: The data showed a decrease in FC within and between the dorsal and ventral pathways, as well as in the third pathway in ST patients. The middle temporal visual cortex (MT+) showed a decreased FC with more regions than other visual ROIs. The data also revealed an increase in FC between the visual ROIs and higher-order cortex. The superior frontal gyrus/BA8 showed an increased FC with more ROIs than other high-order regions, and the hOC4d was involved in an increased FC with more high-order regions than other ROIs. CONCLUSIONS: The study results indicate significant neural reorganization in the vision-related cortex of ST patients with postoperative vision damage. Most subareas within the visual cortex showed remarkable neural dysfunction, and some highe-order cortex may be primarily involved in top-down control of the subareas within the visual cortex. The hot zones may arise in the processing of "top-down" influence.


Asunto(s)
Neoplasias , Corteza Visual , Humanos , Imagen por Resonancia Magnética/métodos , Visión Ocular , Corteza Visual/diagnóstico por imagen , Lóbulo Temporal , Encéfalo
10.
Cancer Res ; 84(5): 688-702, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38199791

RESUMEN

Detection of cytoplasmic DNA is an essential biological mechanism that elicits IFN-dependent and immune-related responses. A better understanding of the mechanisms regulating cytoplasmic DNA sensing in tumor cells could help identify immunotherapeutic strategies to improve cancer treatment. Here we identified abundant cytoplasmic DNA accumulated in lung squamous cell carcinoma (LUSC) cells. DNA-PK, but not cGAS, functioned as a specific cytoplasmic DNA sensor to activate downstream ZAK/AKT/mTOR signaling, thereby enhancing the viability, motility, and chemoresistance of LUSC cells. DNA-PK-mediated cytoplasmic DNA sensing boosted glycolysis in LUSC cells, and blocking glycolysis abolished the tumor-promoting activity of cytoplasmic DNA. Elevated DNA-PK-mediated cytoplasmic DNA sensing was positively correlated with poor prognosis of human patients with LUSC. Targeting signaling activated by cytoplasmic DNA sensing with the ZAK inhibitor iZAK2 alone or in combination with STING agonist or anti-PD-1 antibody suppressed the tumor growth and improved the survival of mouse lung cancer models and human LUSC patient-derived xenografts model. Overall, these findings established DNA-PK-mediated cytoplasmic DNA sensing as a mechanism that supports LUSC malignancy and highlight the potential of targeting this pathway for treating LUSC. SIGNIFICANCE: DNA-PK is a cytoplasmic DNA sensor that activates ZAK/AKT/mTOR signaling and boosts glycolysis to enhance malignancy and chemoresistance of lung squamous cell carcinoma.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-akt , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Proteína Quinasa Activada por ADN , Glucólisis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Pulmón , Serina-Treonina Quinasas TOR , Pronóstico
11.
Transl Psychiatry ; 13(1): 308, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798280

RESUMEN

Cushing's disease is a rare neuroendocrine disorder with excessive endogenous cortisol, impaired cognition, and psychiatric symptoms. Evidence from resting-state fMRI revealed the abnormalities of static brain connectivity in patients with Cushing's disease (CD patients). However, it is unknown whether the CD patients' dynamic functional connectivity would be abnormal and whether the dynamic features are associated with deficits in cognition and psychopathological symptoms. Here, we evaluated 50 patients with Cushing's disease and 57 healthy participants by using resting-state fMRI and dynamic functional connectivity (dFNC) approach. We focused on the dynamic features of default mode network (DMN), salience network (SN), and central executive network (CEN) because these are binding sites for the cognitive-affective process, as well as vital in understanding the pathophysiology of psychiatric disorders. The dFNC was further clustered into four states by k-mean clustering. CD patients showed more dwell time in State 1 but less time in State 4. Intriguingly, group differences in dwell time in these two states can explain the cognitive deficits of CD patients. Moreover, the inter-network connections between DMN and SN and the engagement time in State 4 negatively correlated with anxiety and depression but positively correlated with cognitive performance. Finally, the classifier trained by the dynamic features of these networks successfully classified CD patients from healthy participants. Together, our study revealed the dynamic features of CD patients' brains and found their associations with impaired cognition and emotional symptoms, which may open new avenues for understanding the cognitive and affective deficits induced by Cushing's disease.


Asunto(s)
Trastornos del Conocimiento , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/complicaciones , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/diagnóstico por imagen , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Encéfalo , Mapeo Encefálico , Cognición , Imagen por Resonancia Magnética
12.
Materials (Basel) ; 16(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37445041

RESUMEN

Landslides frequently occur in the loess-rich Yili region of Xinjiang, China, due to the combined effects of wetting-drying and freeze-thaw (WD-FT) cycles, which cause changes in the soil/loess internal structure and shear strength. This paper explores the combined effect of WD-FT cycles on the shear strength evolution of Yili loess through cyclic and triaxial shear tests. The micromechanism of the effect of WD-FT cycles on the loess properties is studied through scanning electron microscopy tests. Finally, the gray correlation analysis method assesses the correlation between relevant macro and micro parameters. The results show that: (1) With the increase in WD-FT cycles, the cohesion of loess decreases first and then gradually stabilizes, while the internal friction angle first grows and then drops before stabilizing. This indicates that the WD-FT cycles cause different degrees of decline in the soil's internal friction angle and cohesion. (2) As the number of WD-FT cycles increases, the average abundance and directional probability entropy fluctuate slightly, gradually decreasing and stabilizing. In contrast, the particle size dimensionality gradually decreases and stabilizes, and the pore area ratio first increases and then gradually stabilizes. (3) Six microstructural parameters (average diameter, average abundance, particle size dimensionality, directional probability entropy, particle roundness, and pore area) are selected for correlation analysis with the shear strength index of loess. The results show that the particle size dimensionality closely correlates with macroscopic internal friction angle under coupled cycling, while the pore area closely correlates with macroscopic cohesion. These findings are instrumental in preventing and controlling loess landslides caused by WD-FT cycles in the Yili region of Xinjiang, China, and similar loess-rich regions.

13.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175676

RESUMEN

Abscisic acid receptors (ABR) play crucial roles in transducing the ABA signaling initiated by osmotic stresses, which has a significant impact on plant acclimation to drought by modulating stress-related defensive physiological processes. We characterized TaPYL5, a member of the ABR family in wheat (Triticum aestivum), as a mediator of drought stress adaptation in plants. The signals derived from the fusion of TaPYL5-GFP suggest that the TaPYL5 protein was directed to various subcellular locations, namely stomata, plasma membrane, and nucleus. Drought stress significantly upregulated the TaPYL5 transcripts in roots and leaves. The biological roles of ABA and drought responsive cis-elements, specifically ABRE and recognition sites MYB, in mediating gene transcription under drought conditions were confirmed by histochemical GUS staining analysis for plants harbouring a truncated TaPYL5 promoter. Yeast two-hybrid and BiFC assays indicated that TaPYL5 interacted with TaPP2C53, a clade A member of phosphatase (PP2C), and the latter with TaSnRK2.1, a kinase member of the SnRK2 family, implying the formation of an ABA core signaling module TaPYL5/TaPP2C53/TaSnRK2.1. TaABI1, an ABA responsive transcription factor, proved to be a component of the ABA signaling pathway, as evidenced by its interaction with TaSnRK2.1. Transgene analysis of TaPYL5 and its module partners, as well as TaABI1, revealed that they have an effect on plant drought responses. TaPYL5 and TaSnRK2.1 positively regulated plant drought acclimation, whereas TaPP2C53 and TaABI1 negatively regulated it. This coincided with the osmotic stress-related physiology shown in their transgenic lines, such as stomata movement, osmolytes biosynthesis, and antioxidant enzyme function. TaPYL5 significantly altered the transcription of numerous genes involved in biological processes related to drought defense. Our findings suggest that TaPYL5 is one of the most important regulators in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in wheat.


Asunto(s)
Sequías , Triticum , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo
14.
Endokrynol Pol ; 74(3): 294-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37155308

RESUMEN

INTRODUCTION: The hypothalamus-pituitary-adrenal (HPA) axis and its end product cortisol is a major response mechanism to stress and plays a critical role in many psychiatric disorders. Cushing's disease (CD) serves as a valuable in vivo "hyperexpression" model to elucidate the effect of cortisol on brain function and mental disorders. Changes in brain macroscale properties measured by magnetic resonance imaging (MRI) have been detailed demonstrated, but the biological and molecular mechanisms underlying these changes remain poorly understood. MATERIAL AND METHODS: Here we included 25 CD patients and matched 18 healthy controls for assessment, and performed transcriptome sequencing of peripheral blood leukocytes. Weighted gene co-expression network analysis (WGCNA) was performed to construct a co-expression network of the relationships between genes and we identified a significant module and hub gene types associated with neuropsychological phenotype and psychiatric disorder identified in enrichment analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis preliminarily explored the biological functions of these modules. RESULTS: The WGCNA and enrichment analysis indicated that module 3 of blood leukocytes was enriched in broadly expressed genes and was associated with neuropsychological phenotypes and mental diseases enrichment. GO and KEGG enrichment analysis of module 3 identified enrichment in many biological pathways associated with psychiatric disorders. CONCLUSION: Leukocyte transcriptome of Cushing's disease is enriched in broadly expressed genes and is associated with nerve impairment and psychiatric disorders, which may reflect some changes in the affected brain.


Asunto(s)
Trastornos Mentales , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Transcriptoma , Hidrocortisona , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Perfilación de la Expresión Génica/métodos , Trastornos Mentales/genética
15.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112774

RESUMEN

Objective: To assess the immunogenicity and safety of the enterovirus 71 vaccine (Vero cell) (EV71 vaccine) and trivalent split-virion influenza vaccine (IIV3). Methods: Healthy infants aged 6-7 months were recruited from Zhejiang Province, Henan Province, and Guizhou Province and randomly assigned to the simultaneous vaccination group, EV71 group, and IIV3 group at a ratio of 1:1:1. Then, 3 mL blood samples were collected before vaccination and 28 days after the second dose of vaccine. Cytopathic effect inhibition assay was used to detect EV71 neutralization antibody, and cytopathic effect inhibition assay was used to detect influenza virus antibody. Results: A total of 378 infants were enrolled and received the first dose of vaccine and were included in the safety analysis, and 350 infants were involved in the immunogenicity analysis. The adverse events rates were 31.75%, 28.57%, and 34.13% in the simultaneous vaccination group, EV71 group, and IIV3 group (p > 0.05), respectively. No vaccine-related serious adverse events were reported. After two doses of EV71 vaccine, the seroconversion rates of EV71 neutralizing antibody were 98.26% and 97.37% in the simultaneous vaccination group and the EV71 group, respectively. After two doses of IIV3, the simultaneous vaccination group and the IIV3 group, respectively, had seroconversion rates of 80.00% and 86.78% for H1N1 antibody, 99.13% and 98.35% for H3N2 antibody, and 76.52% and 80.99% for B antibody. There was no statistically significant difference in the seroconversion rates of influenza virus antibodies between groups (p > 0.05). Conclusions: The coadministration of EV71 vaccine and IIV3 has good safety and immunogenicity in infants aged 6-7 months.

16.
Sci Rep ; 13(1): 5763, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031288

RESUMEN

We investigate the effects of disorder and shielding on quantum transports in a two dimensional system with all-to-all long range hopping. In the weak disorder, cooperative shielding manifests itself as perfect conducting channels identical to those of the short range model, as if the long range hopping does not exist. With increasing disorder, the average and fluctuation of conductance are larger than those in the short range model, since the shielding is effectively broken and therefore long range hopping starts to take effect. Over several orders of disorder strength (until [Formula: see text] times of nearest hopping), although the wavefunctions are not fully extended, they are also robustly prevented from being completely localized into a single site. Each wavefunction has several localization centers around the whole sample, thus leading to a fractal dimension remarkably smaller than 2 and also remarkably larger than 0, exhibiting a hybrid feature of localization and delocalization. The size scaling shows that for sufficiently large size and disorder strength, the conductance tends to saturate to a fixed value with the scaling function [Formula: see text], which is also a marginal phase between the typical metal ([Formula: see text]) and insulating phase ([Formula: see text]). The all-to-all coupling expels one isolated but extended state far out of the band, whose transport is extremely robust against disorder due to absence of backscattering. The bond current picture of this isolated state shows a quantum version of short circuit through long hopping.

17.
Front Neurosci ; 17: 1131063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937685

RESUMEN

Objective: The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods: We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results: Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion: We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.

18.
Clin Interv Aging ; 18: 1-11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36628327

RESUMEN

Purpose: Many older patients with acute myocardial infarction (AMI) have impaired ability for activities of daily living (ADL). Impaired ADL leads to poor prognosis in elderly patients. The Global Registry of Acute Coronary Events (GRACE) score is widely used for risk stratification in AMI patients but does not consider physical performance, which is an important prognosis predictor for older adults. This study assessed whether the Barthel Index (BI) score combine the GRACE score would achieve improved one-year mortality prediction in older AMI patients. Patients and Methods: This single-center retrospective study included 688 AMI patients aged ≥65 years who were divided into an impaired ADL group (BI ≤60, n = 102) and a normal ADL group (BI >60, n = 586) based on BI scores at discharge. The participants were followed up for one year. Cox survival models were constructed for BI score, GRACE score, and BI score combined GRACE score for one-year mortality prediction. Results: Patients had a mean age of 76.29 ± 7.42 years, and 399 were men (58%). A lower BI score was associated with more years of hypertension and diabetes, less revascularization, longer hospital stays, and higher one-year mortality after discharge. Multivariable Cox regression analysis identified BI as a significant risk factor for one-year mortality in older AMI patients (HR 0.977, 95% CI, 0.963-0.992, P = 0.002). BI (0.774, 95% CI: 0.731-0.818) and GRACE (0.758, 95% CI: 0.704-0.812) scores had similar predictive power, but their combination outperformed either score alone (0.810, 95% CI: 0.770-0.851). Conclusion: BI at discharge is a significant risk factor for one-year mortality in older AMI patients, which can be better predicted by the combination of BI and GRACE scores.


Asunto(s)
Infarto del Miocardio , Alta del Paciente , Masculino , Anciano , Humanos , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Actividades Cotidianas , Medición de Riesgo , Pronóstico , Factores de Riesgo , Sistema de Registros
19.
Neuroimage Clin ; 37: 103316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36610311

RESUMEN

BACKGROUND: The physiopathologic mechanism of Meige syndrome (MS) has not been clarified, and neuroimaging studies centering on cerebellar changes in MS are scarce. Moreover, even though deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been recognized as an effective surgical treatment for MS, there has been no reliable biomarker to predict its efficacy. OBJECTIVE: To characterize the volumetric alterations of gray matter (GM) in the cerebellum in MS and to identify GM measurements related to a good STN-DBS outcome. METHODS: We used voxel-based morphometry and lobule-based morphometry to compare the regional and lobular GM differences in the cerebellum between 47 MS patients and 52 normal human controls (HCs), as well as between 31 DBS responders and 10 DBS non-responders. Both volumetric analyses were achieved using the Spatially Unbiased Infratentorial Toolbox (SUIT). Further, we performed partial correlation analyses to probe the relationship between the cerebellar GM changes and clinical scores. Finally, we plotted the receiver operating characteristic (ROC) curve to select biomarkers for MS diagnosis and DBS outcomes prediction. RESULTS: Compared to HCs, MS patients had GM atrophy in lobule Crus I, lobule VI, lobule VIIb, lobule VIIIa, and lobule VIIIb. Compared to DBS responders, DBS non-responders had lower GM volume in the left lobule VIIIb. Moreover, partial correlation analyses revealed a positive relationship between the GM volume of the significant regions/lobules and the symptom improvement rate after DBS surgery. ROC analyses demonstrated that the GM volume of the significant cluster in the left lobule VIIIb could not only distinguish MS patients from HCs but also predict the outcomes of STN-DBS surgery with high accuracy. CONCLUSION: MS patients display bilateral GM shrinkage in the cerebellum relative to HCs. Regional GM volume of the left lobule VIIIb can be a reliable biomarker for MS diagnosis and DBS outcomes prediction.


Asunto(s)
Estimulación Encefálica Profunda , Síndrome de Meige , Humanos , Sustancia Gris/diagnóstico por imagen , Síndrome de Meige/patología , Imagen por Resonancia Magnética/métodos , Cerebelo/patología
20.
J Phys Condens Matter ; 35(13)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36701808

RESUMEN

A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wanget al2020Phys. Rev. Lett.125196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak atg∼0of the critical distribution and the largeglimit of the universal scaling functionßresemble those behaviors of three-dimensional disordered systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...